

APPENDIX A. PHOTOS

Photo 1. From southeast corner of project area facing northwest

Photo 2. From southern project area facing north.

Photo 4. From central project area facing east to existing facility.

Photo 5. Facing southeast to property that will be acquired from AMREP.

Photo 6. Outfall feature at eastern perimeter of existing facility.

Photo 7. Facing west, on the intersection of King Blvd. and Rainbow Blvd.

Photo 8. Facing west, along King Blvd.

Photo 9. Facing south toward the intersection of King Blvd and Serenade St.

Photo 10. Facing west along the waterline alignment north of King Blvd.

Photo 11. Facing west along the waterline alignment showing depression (old stock pond)

Photo 12. Facing north along Phoenix Rd. showing Well Site 9.

Appendix B.
Water Quality Analysis

WELL REPORT FOR DRILLING, SAMPLING, CONSTRUCTION, AND TESTING, CITY OF RIO RANCHO WELL 9R (NMOSE FILE NO. RG-26259-POD3)

by

Roger Peery, CPG, PG

Zach Chavez

JOHN SHOMAKER & ASSOCIATES, INC.

Water-Resource and Environmental Consultants 2611 Broadbent Parkway NE Albuquerque, New Mexico 87107 505-345-3407 www.shomaker.com

prepared for

CITY OF RIO RANCHO New Mexico

September 4, 2024

JSAI ii

WELL REPORT FOR DRILLING, SAMPLING, CONSTRUCTION, AND TESTING, CITY OF RIO RANCHO WELL 9R (NMOSE FILE NO. RG-26259-POD3)

EXECUTIVE SUMMARY

The City of Rio Rancho Well 9R is permitted under New Mexico Office of the State Engineer RG-26259-POD3. Construction on this well began in July of 2023 and the final well video survey was performed in January of 2024. The well is located on the outskirts of Rio Rancho, northeast of the intersection of Phoenix Road NW and Unicorn Circle NW.

The pilot borehole was drilled to a depth of 2,006 ft bgl and discrete-interval zone sampling was performed in the open borehole to assess arsenic concentrations and other water-quality parameters in the aquifer with depth. The deepest zone sampled was from 1,940 to 1,969 ft bgl, and the shallowest from 1,591 to 1,620 ft bgl. Water-quality results indicated that the arsenic concentration exceeded the NMED DWB standard in each sample, and concentration increased with increasing depth.

In order to minimize the production of arsenic, the well was completed to total depth of 1,885 ft bgl. The well is constructed with 18.625-in. OD high-strength low-alloy steel, 18.625-in. OD Type 304L stainless-steel casing, and Type 304L stainless-steel wire-wrapped screen.

A step-drawdown pumping test was performed on December 23, 2023 at rates of 600, 700, 800, 900, and 1,000 gpm. Specific capacity ranged from 7.36 gpm/ft of drawdown at a pumping rate of 600 gpm, to 7.01 gpm/ft of drawdown at a pumping rate of 1,000 gpm. A constant-rate pumping test was performed from December 28 to 30, 2023 at 950 gpm for about 65 hours with a specific capacity of 6.33 gpm/ft of drawdown. Depth to water at the start of the constant-rate test was 1,095.90 ft bgl.

Laboratory analysis of water quality was performed for all parameters required by the NMED DWB. Of the parameters analyzed, only arsenic exceeded the primary drinking water standard of 0.01 mg/L, having a concentration of 0.048 mg/L. The pH was 8.64 and exceeds the secondary NMED DWB drinking water standard of 8.5: a non-enforceable aesthetic standard. Total dissolved solids concentration was 241 mg/L. E. Coli and total coliform bacteria were absent in the water.

If the pump intake is installed at a depth of about 1,420 ft, the well is capable of producing up to 1,400 gpm for about 5 years if the well is pumped 100 percent of the time. This pumping rate and pumping schedule will allow the City to maximize its water right associated with this point of diversion. If the well is pumped 100 percent of the time for 1 year, the corresponding diversion would be 2,259.8 ac-ft. Greater pumping rates could be obtained if the pump were placed in the blank section from 1,640 to 1,660 ft bgl.

CONTENTS

	page
EXECUTIVE SUMMARY	ii
1.0 INTRODUCTION	1
2.0 PLUGGING AND ABANDONMENT ORIGINAL WELL 9 (RG-26259)	1
3.0 GEOLOGY AND HYDROGEOLOGY	4
4.0 WELL SUMMARY	5
5.0 PROJECT HISTORY	6
6.0 DRILLING, GEOPHYSICAL LOGGING, AND WELL CONSTRUCTION, CITY OF I	
6.1 Conductor Casing 6.2 Pilot Hole Drilling 6.3 Pilot Hole Deviation Surveys During Drilling 6.4 Geophysical Logging 6.5 Discrete-Interval Zone Sampling 6.6 Production Well Final Design 6.7 Reaming the Pilot Hole 6.8 Casing Installation 6.9 Filter Gravel, Gravel Backfill, and Annular Seal Installation 6.10 Alignment Survey	7 9 12 16 16 16
7.0 WELL DEVELOPMENT	18 19
8.0 AQUIFER TESTING	20 20 20 21 24
9.0 DISINFECTION	31
10.0 KEFEKENCES CITED	1/.

JSAI iv

TABLES

	page
Table 1.	Quantity and weight of neat cement installed during plugging and abandonment of original Well 9 (RG-26259)
Table 2.	Summary of drill cuttings collected from the pilot borehole, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 3.	Summary of representative drilling-fluid properties from selected depths, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 4.	Results of deviation surveys performed by the Contractor while drilling the pilot borehole, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 5.	Zones where discrete interval zone sampling was attempted in the pilot borehole, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 6.	Discrete-interval sampling zones and purge volumes, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 7.	Summary of water-quality data from discrete-interval zone sampling, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 8.	Summary of December 23, 2023 step-drawdown pumping test data, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 9.	Summary from December 28 to 30, 2023 constant-rate pumping test, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 10	. Summary of cumulative sediment production during December 28 to 30, 2023 constant-rate pumping test, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 11	. Projected pumping water levels, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 12	. Summary of field water-quality results, City of Rio Rancho Well 9R (RG-26259-POD3)
Table 13	. Summary of water-quality analytical results, City of Rio Rancho Well 9R (RG-26259-POD3)

JSAI v

ILLUSTRATIONS

	page
Figure 1.	Topographic map showing the locations of Well 9R (RG-26259-POD3), and original Well 9 (RG-26259), City of Rio Rancho, New Mexico
Figure 2.	Aerial photograph showing locations of original Well 9 (RG-26259) and replacement Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico
Figure 3.	Diagram showing selected geophysical logs for replacement Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico
Figure 4.	Schematic diagram showing generalized configuration for discrete-interval zone sampling, Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico
Figure 5.	Well completion diagram, City of Rio Rancho Well 9R (RG-26259-POD3), completed November 2023, New Mexico
Figure 6.	Graph showing transducer-recorded drawdown and partial-recovery data from the step-drawdown pumping test, Well 9R, City of Rio Rancho, New Mexico
Figure 7.	Semi-logarithmic plot of transducer-recorded drawdown and recovery water-level data from the 3,891-min constant-rate pumping test, Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico.

JSAI vi

APPENDICES

(follow text)

- Appendix A. New Mexico Office of the State Engineer Well Record (RG-26259-POD3), City of Rio Rancho Well 9R
- Appendix B. Site photographs, City of Rio Rancho Well 9R
- Appendix C. Descriptions of cuttings samples, City of Rio Rancho Well 9R
- Appendix D. Drilling fluid reports, City of Rio Rancho Well 9R
- Appendix E. Zone sampling water-quality laboratory reports, City of Rio Rancho Well 9R
- Appendix F. Reamed borehole caliper logs, City of Rio Rancho Well 9R
- Appendix G. Video Survey, City of Rio Rancho Well 9R
- Appendix H. Well plugging and abandonment report for original City of Rio Rancho Well 9 (RG-26259)
- Appendix I. Water-quality laboratory reports, City of Rio Rancho Well 9R

JSAI vii

ABBREVIATIONS

amsl above mean sea level

API American Petroleum Institute

ASTM American Society for Testing Materials

bgl below ground level BHA bottom hole assembly cfm cubic feet per minute

cm centimeters
CRT constant-rate test
DWB Drinking Water Bureau

EPA Environmental Protection Agency

fig. figure

gpd/ft gallons per day per foot gpm gallons per minute

gpm/ft gallons per minute per foot GPS global positioning system HSLA high-strength low-alloy

ID inside diameter in.² square inches

JSAI John Shomaker & Associates, Inc.
JWGS Jet West Geophysical Services, Inc.

km² square kilometers

lb(s) pound(s)

lbs/ft pounds per foot

m meters

MCL maximum contaminant level

mg/L milligrams per liter

mi² square miles mL milliliters

μg/L micrograms per liter μmhos/cm micromhos per centimeter μS/cm microSiemens per centimeter

NMOSE New Mexico Office of the State Engineer NMED New Mexico Environment Department,

NPSH net positive suction head NTU nephelometric turbidity units

OD outside diameter ohm-m ohm-meters ppm parts per million

psi pounds per square inch
Q flow rate, generally in gpm
rpm revolutions per minute

sec second; section sec/qt seconds per quart

SP log spontaneous potential log

T transmissivity temp temperature visc viscosity yd³ cubic yards

WELL REPORT FOR DRILLING, SAMPLING, CONSTRUCTION, AND TESTING, CITY OF RIO RANCHO WELL 9R (NMOSE FILE NO. RG-26259-POD3)

1.0 INTRODUCTION

This report summarizes the drilling, sampling, construction, development, and pumping tests of the City of Rio Rancho Well 9R (Well 9R), a municipal supply replacement well. Original Well 9 was completed in October 1984 under New Mexico Office of the State Engineer (NMOSE) File No. RG-26259. Well 9R is about 150 ft northwest of Well 9. Well 9R is permitted as RG-26259-POD3 by the NMOSE. It is located about 7 miles northwest of the City of Rio Rancho, northeast of the intersection of Phoenix Road NW and Unicorn Circle NW (Figs. 1 and 2). A copy of the NMOSE Well Record is included as Appendix A.

Well 9R was drilled by Hydro Resources (Hydro), by the reverse mud-rotary method using a Schramm T-200 drilling rig. Conductor casing was installed and cemented in place on July 21, 2023, drilling the pilot borehole began on August 24, 2023, and final well video survey was performed on January 25, 2024. John Shomaker & Associates, Inc. (JSAI) provided Professional Hydrogeologic Services throughout the project including developing drilling specifications, construction oversight, discrete-interval zone sample collection, geophysical log interpretation, well completion, development, data collection during test pumping, collection of water-quality samples, interpretation of test-pumping and water-quality data. JSAI was subcontracted to Huitt-Zollars, Inc. (HZ), and worked closely with HZ throughout the project. Site photographs from the Well 9R project can be found in Appendix B.

2.0 PLUGGING AND ABANDONMENT ORIGINAL WELL 9 (RG-26259)

Hydro began removing the pump from Well 9 on July 19, 2023. Many of the joints could not be unscrewed and the pipe had to be cut. The well was plugged and abandoned with neat cement using positive displacement methods on July 22, 2023. A total of 84 cubic yards (yd³) of cement was installed (Table 1). JSAI measured the cement weight of each truck.

Table 1. Quantity and weight of neat cement installed during plugging and abandonment of original Well 9 (RG-26259)

quantity, yd ³	weight, lbs/gal	quantity, yd ³	weight, lbs/gal	quantity, yd ³	weight, lbs/gal
8	18.1	6	17.7	6	17.9
8	17.6	6	18.1	6	18.2
8	18.0	6	17.8	2	18.1
8	17.8	6	18.0	total cement	84 yd ³
8	18.1	6	18.0	installed	o4 yu

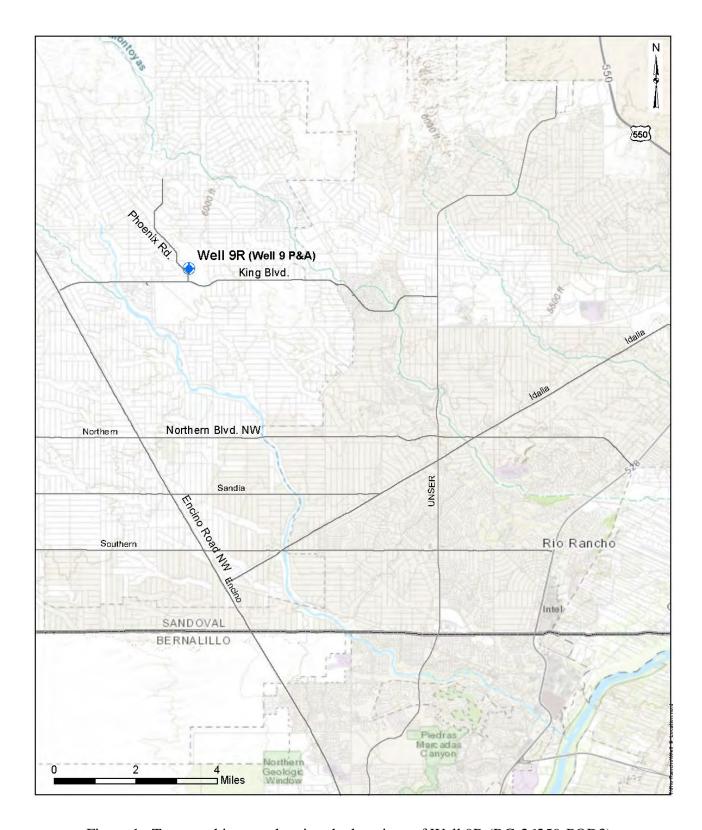


Figure 1. Topographic map showing the locations of Well 9R (RG-26259-POD3), and original Well 9 (RG-26259), City of Rio Rancho, New Mexico.

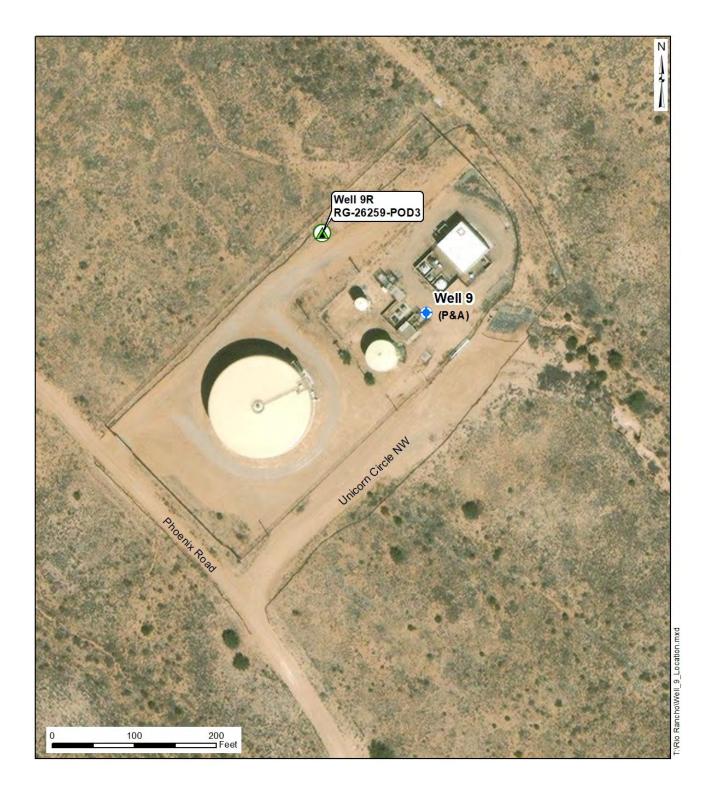


Figure 2. Aerial photograph showing locations of original Well 9 (RG-26259) and replacement Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico.

3.0 GEOLOGY AND HYDROGEOLOGY

The pilot borehole for replacement Well 9R was drilled to 2,006 ft below ground level (bgl) in Santa Fe Group sediments, composed of Miocene-age to lower Pleistocene-age alluvial deposits. Well 9R pilot borehole primarily penetrated interbedded layers of red and tan clay, fine to coarse silty sand, and sandy clay. A summarized sample description of drill cuttings collected from the pilot hole is presented as Table 2. Complete sample drill cuttings descriptions are included as Appendix C.

Table 2. Summary of drill cuttings collected from the pilot borehole, City of Rio Rancho Well 9R (RG-26259-POD3)

depth interval, ft bgl	lithologic description		
0-280	gravel with interbedded silt and clay		
280-410	red clay with interbedded sand and silt, minor gravel		
410-610	clay with interbedded sand, minor gravel		
610-1,010	sand with interbedded silt and clay, minor gravel		
1,010-1,470	clay with interbedded silt and sand		
1,470-1,750	sand interbedded with silt, minor clay		
1,750-2,005	sand interbedded with silt and clay		

ft bgl - feet below ground level

The geologic units penetrated by the borehole, according to Dan Koning (September 2023) with the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), are provided below:

- Ceja Formation 0 to 300 ft bgl: mostly coarse-grained Ceja with a few fine-grained intervals.
- Navajo Draw Member of the Arroyo Ojito Formation 300 to 1,500 ft bgl: mostly clay-rich mud mixed with very-fine to fine-grained sand, with some mediumgrained sand.
- Upper Cerro Conejo Formation 1,500 to 2,006 ft bgl (extends below 2,006 ft): upper sandy unit of Cerro Conejo interfingering with some fine-grained Navajo Draw Member tongues

4.0 WELL SUMMARY

(All depths in feet, referred to ground-level datum)

Location: NE of the intersection of Phoenix Road NW and Unicorn Circle NW

Elevation: about 6,070 ft amsl

Commenced: July 19, 2023 (begin drilling for conductor casing)

Completed: January 25, 2024 (video survey)

Contractor: Hydro Resources

Constant-Rate Test:

Logs Pilot Borehole: lithologic samples description JSAI

deviation surveys

e-Log, temperature, and gamma ray logs
caliper, deviation, and sonic logs

Hydro Resources

Jet West Geophysical Services, Inc.

Jet West Geophysical Services, Inc.

Bits: 36-in. auger bit 0-80

17-1/2-in. mill-tooth tricone/long-tooth button bit 80-2,005 28-in. reamer 80-1,950

Conductor Casing: 30-in. OD, 0.375-in. wall, ASTM A-53, Grade B, mild steel +1.5-80

Blank Casing: 18.625-in. OD, high-strength, low-alloy steel,

ASTM A139 blank, 0.375-in. wall, ASTM A606 Type 4 +3.0-1,098 18.625-in. OD, dielectric coupling 1,098-1,100

18-in. OD, Type 304L stainless-steel,

ASTM A139 blank, 0.375-in. wall, ASTM A778 1,100-1,430 1,640-1,660

1,700-1,715 1,880-1,885

Screen Casing: 18-in. OD Type 304L stainless-steel,

Roscoe Moss Wire Wrap screen 0.045-in. slot 1,430-1,640

1,660-1,700 1,715-1,880

Gage Lines: two 1.9-in. OD, schedule 40 mild steel +2.8-1,128 two 1.9-in. OD, dielectric coupling 1.128-1.130

two 1.9-in. OD, dielectric coupling 1,128-1,130 two 1.9-in. OD, Type 304L schedule 40 stainless-steel 1,130-1,711

Gravel Pack: PW Gillibrand[®] 8 – 16 gradation silica sand 795-1,890

1/8- to 3/8-in. rounded well gravel 200-795

Annular Seal: cement surface seal 1-200 cement reamed borehole plug 1,890-1,950

Water Level: 1,095.90 ft bgl on December 28, 2023 (prior to constant-rate test)

Step-Drawdown Test: Step 1: 600 gpm for 60 minutes, ending Q/s: 7.44 gpm/ft

Step 2: 700 gpm for 60 minutes, ending Q/s: 7.19 gpm/ft Step 3: 800 gpm for 60 minutes, ending Q/s: 7.22 gpm/ft Step 4: 900 gpm for 60 minutes, ending Q/s: 7.03 gpm/ft Step 5: 1,000 gpm for 60 minutes, ending Q/s: 7.01 gpm/ft

950 gpm for 3,891 minutes, ending water level 1,238 ft bgl

Specific Capacity: 6.41 gpm/ft of drawdown at end of constant-rate test

Temperature of Produced Water During Constant-Rate Test: ~25°C

Specific Conductance of Produced Water during Constant-Rate Test: 310 µS/cm

Sand Production (total over entire constant-rate test (~65 hours)): 0.7 mL

5.0 PROJECT HISTORY

2023-2024

Jul. 19 to 21	Butch's Drilling, auger 36-in. hole to 80 ft bgl. Set and cement 30-in. surface casing to 80 ft bgl.
Jul. 22 to 26	Plug and abandon Original Well 9
Aug. 21 to Aug. 24	Mobilize drill rig and support equipment to site, site preparation, rig up, and mud up.
Aug. 24	Spud 17.5-in. mill-tooth tri-cone bit.
Aug. 24 to Sep. 3	Drill 17.5-in. pilot borehole from 105 to 2,006 ft bgl.
Sep. 4	Pilot borehole geophysical logs by Jet West Geophysical Services, Inc.
Sep. 5 to 22	Discrete-interval zone sample collection.
Oct. 23 to Nov. 5	Ream borehole to 28-in. from 80 to 1,950 ft bgl.
Nov. 7	Caliper and deviation log of reamed borehole by Jet West Geophysical Services, Inc.
Nov. 8	Install cement plug in bottom of reamed borehole.
Nov. 9 to 11	Install 18-in. OD diameter production casing, screen, and 1.9-in. OD gage lines.
Nov. 11 to 13	Install filter pack to 795 ft bgl, and 1/8 to 3/8-in. well gravel to 200 ft bgl.
Nov. 14	Install annular cement seal.
Nov. 15 to 24	Open end air-lift development.
Nov. 25 to 28	Development by swabbing and reverse air-lift pumping.
Nov. 29 to Dec. 2	De-mobilize drilling rig.
Dec. 2 to 3	Mobilize pump rig, rig up.
Dec. 7 to 9	Bailing
Dec. 10	Perform alignment survey.
Dec. 11	Chlorination.
Dec. 15	Install test pump to 1,387 ft bgl.
Dec. 16 to 21	Development by pumping.
Dec. 23	Step-drawdown pumping test.
Dec. 28 to Dec. 30	Constant-rate pumping test.
Jan. 25, 2024	Video survey by Hydro.

6.0 DRILLING, GEOPHYSICAL LOGGING, AND WELL CONSTRUCTION, CITY OF RIO RANCHO WELL 9R

6.1 Conductor Casing

Drilling operations began with auger drilling a borehole for the conductor casing. Hydro sub-contracted Butch's Drilling of Levelland, Texas. Butch's Drilling used an auger rig to drill a 36-in-diameter borehole to a depth of 80 ft bgl and 30-in.-diameter conductor casing was installed to a depth of 80 ft bgl, and cemented in place. The 0.375-in.-thick wall casing was supplied in 40-ft lengths, and welded with two passes by a certified welder. After centering and aligning the casing, the conductor casing was cemented in place using the positive displacement method, with a sand-cement grout weighing 17.5 pounds per gallon. Conductor casing installation was completed on July 21, 2023.

6.2 Pilot Hole Drilling

Drilling of the 17-1/2-in. pilot hole began on August 24, 2023. Well 9R was drilled by the reverse mud-rotary method using with a Schramm T-200 rig. Drilling fluid consisted of a bentonite-based fluid system with polymeric additives for filtrate control. Drilling fluid was discharged into a 1-stage portable settling pit. The fluid discharged over a shale-shaker prior to entering the pit to remove a majority of the cuttings before the fluid recirculated into the pit and back into the borehole.

The intent of the drilling-fluid program was to create a low-viscosity, low-weight, and low-filtrate fluid system that would stabilize the borehole, allow for adequate borehole cleaning to remove cuttings, and minimize the potential for aquifer damage. Drilling fluid tests were performed during pilot-hole drilling by a certified drilling-fluid Engineer. Drilling fluid properties were mostly maintained within specified limits. The results of these tests are provided as Appendix D. A summary table of basic drilling-fluid properties at selected intervals during drilling of the pilot borehole and reaming is provided as Table 2.

The 17-1/2-in. pilot hole was drilled with a mill-tooth, tri-cone drill bit and a long-tooth button bit to a depth of approximately 2,006 ft bgl. The drilling Contractor operated a drilling-rate recorder during the majority of the project, and monitored rotary speed, air pressure, and the weight on the bit during drilling and reaming. Cuttings samples were collected at 10-ft intervals during pilot hole drilling. Water used in mixing drilling fluid was supplied from frac tanks filled with water supplied by water truck deliveries (PG Enterprises) that obtained water from fire hydrant near the corner of King Boulevard and Rainbow Boulevard.

Table 3. Summary of representative drilling-fluid properties from selected depths, City of Rio Rancho Well 9R (RG-26259-POD3)

date	depth, ft bgl	mud weight, lbs/gal	mud viscosity, sec/qt	filtrate/ water loss, cm ³ /30 min	cake thickness, 32nds	sand content, percent by volume		
	drilling-fluid properties of the pilot hole							
specification		<9	30 to 40	<10	≤3/32	≤2		
8/24/23	80	8.4	29	35.2	1	0.5		
8/25/23	331	8.5	30	13.6	1	trace		
8/26/23	595	8.8	30	10.4	1	.25		
8/27/23	793	8.9	31	10.4	1	.25		
8/28/23	1,042	8.9	31	9.6	1	.25		
8/29/23	1,157	9.0	30	10.4	1	.50		
8/30/23	1,316	8.8	31	8.8	1	.50		
8/31/23	1,434	8.8	32	9.6	1	.50		
9/1/23	1,686	8.9	31	9.6	1	.50		
9/2/23	1,769	8.9	30	8.8	1	.50		
9/3/23	1,976	8.8	30	10.6	1	.25		
		drilling-flu	id properties	s of the reamed h	ole			
specification		<9	30 to 40	≤13	≤3/32	≤2		
10/25/23	355	8.6	31	10.4	1	.25		
10/26/23	551	8.8	31	12.0	1	.25		
10/27/23	752	8.8	31	11.2	1	.25		
10/28/23	938	8.9	32	12.0	1	.25		
10/29/23	1,077	8.9	31	12.8	1	.50		
10/31/23	1,308	8.8	31	11.2	1	trace		
11/1/23	1,425	8.9	32	12.8	1	.50		
11/4/23	1,643	8.9	31	12.8	1	.50		
11/5/23	1,863	9.0	33	12.8	2	.50		

bold indicates above specification

cm³/30 min – centimeters cubed per 30 minutes

ft bgl - feet below ground level sec/qt - seconds per quart

n/a - not available

6.3 Pilot Hole Deviation Surveys During Drilling

Deviation surveys were taken by the Contractor at intervals of about 60 ft or less to the total pilot borehole depth. The deviation survey results are shown in Table 4. Every survey performed was within the maximum 0.5-degree threshold. Survey results were verified with a wire-line survey taken during geophysical logging after completion of the pilot borehole.

Table 4. Results of deviation surveys performed by the Contractor while drilling the pilot borehole, City of Rio Rancho Well 9R (RG-26259-POD3)

depth ft bgl	deviation in degrees	depth ft bgl	deviation in degrees
110	0.1	1,129	0.2
170	0.1	1,189	0.1
221	0.2	1,249	0.1
281	0.2	1,309	0.2
341	0.1	1,369	0.1
409	0.0	1,429	0.1
470	0.1	1,489	0.1
529	0.2	1,549	0.3
589	0.1	1,609	0.3
650	0.1	1,689	0.4
710	0.1	1,749	0.0
769	0.0	1,809	0.3
829	0.0	1,869	0.1
889	0.0	1,930	0.3
949	0.0	1,990	no survey
1,009	0.0	2,005	no survey
1,069	0.0		

ft bgl - feet below ground level

6.4 Geophysical Logging

On September 4, 2023, Jet West Geophysical Services, Inc. performed geophysical logging of the 17-1/2-in. pilot hole. All geophysical logs were run with the borehole full of drilling fluid, and no problems were noted during the logging. The logging suite included temperature, fluid resistivity, normal resistivity (8-, 16-, 32-, and 64-in.), spontaneous potential (SP), gamma-ray, neutron, caliper, sonic, deviation, and directional alignment. Geophysical logs were used in correlation with other data to determine general lithology, depth to water, and to guide final well construction. A diagram showing geophysical logs collected from the pilot borehole is presented as Figure 3.

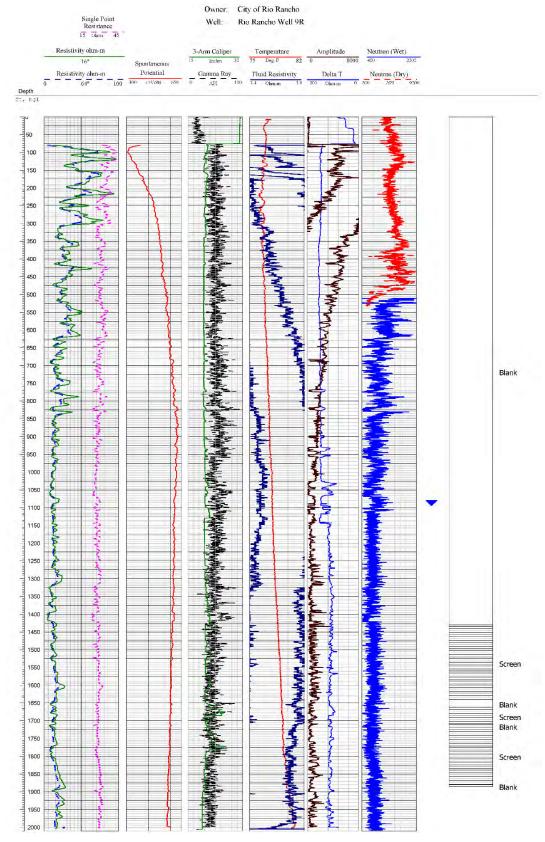


Figure 3. Diagram showing selected geophysical logs for replacement Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico.

Geophysical logging of the 28-in. diameter reamed borehole was performed by Jet West Geophysical Services, Inc. on November 7, 2023. Logs included caliper, deviation, and directional alignment.

The borehole fluid temperature increased with depth, from approximately 77°F at the surface to 81°F at total depth. The temperature of the water produced during pumping tests was at most 80.6°F. The fluid resistivity (inverse of conductivity) within the saturated zone (below 1,100 ft) increased somewhat with depth, indicating a relative decrease in total dissolved solids concentration with depth.

In this geologic setting, areas with higher resistivity are generally indicative of more coarse-grained sediments. Within the saturated zone, the resistivity log has relatively low resistivity in the range 16 to 18 ohm-meters. Resistivity values of 20 to 25 ohm-meters are indicative of silt to sand-rich intervals. The form of the SP log generally follows that of the resistivity logs.

The natural-gamma-ray log shows gamma response consistently in the range of 30 to 60 counts per second (cps), with peaks up to about 60 cps. The higher readings correspond with low-resistivity interbedded clay-rich beds throughout the section. There are no anomalous high-gamma spikes that would indicate significant sources of radioactivity.

Neutron response ranged from 400 to 2,200 API units, but was consistently between 400 and 1,000 API units below the water table. Higher neutron values generally corresponded with sand-rich zone having higher resistivity values.

The sonic log indicates a depth to water of about 1,140 ft bgl, which is about 40 ft deeper than that documented during the pumping tests. The log does not indicate significant consolidation of the sediments with depth.

The caliper log of the pilot hole indicated the borehole diameter ranged from about 17.25 to 20.5-in. below the conductor casing to a depth of 1,660 ft. A washout (area where the hole is enlarged) of up to about 23.25-in. diameter is present from 1,660 to 1,685 ft, and a washout of up to 22.75-in. diameter is present from 1,760 to 1,780 ft. The caliper log of the reamed borehole indicated that there were washouts of up to 37-in. from 684 to 687 ft, 38.5-in. from 816 to 826, and 32.5-in. from 933 to 940 ft. The reamed caliper log indicated a number of areas where the borehole was under gage. The borehole was as small as 25.5-in from 79 to 88 ft, 24.5-in. from 118 to 122 ft, 26-in. from 127 to 134 ft, 26.5-in at numerous depths down to about 1,780 ft, and 22-in. from 1,804 to 1,828 ft. Hydro cleaned out the borehole with the reaming assembly prior to running casing.

Deviation of the pilot hole was less than the allowable deviation of 0.5 degrees throughout its entire length. The maximum departure from true vertical was 3.5 ft at a depth of 1,750 ft. and the departure from vertical at the bottom of the borehole was 3.0 ft. Deviation of the reamed borehole was less than the allowable deviation of 0.5 degrees throughout its entire length. The maximum departure from vertical was 1.05 ft at a depth of 1,680 ft, and the departure from vertical at 1,880 ft was 0.78 ft.

6.5 Discrete-Interval Zone Sampling

Upon completion of the geophysical logs, the logs and cuttings were reviewed, and four zones were selected for sampling. The screen for the sample tool was 29.2 ft long and was run on drill pipe. The selected zones differed somewhat from the zones sampled due to the limited availability of different lengths of drill pipe. Depths where zone sampling was attempted are shown in Table 5.

Table 5. Zones where discrete interval zone sampling was attempted in the pilot borehole, City of Rio Rancho Well 9R (RG-26259-POD3)

zone	depth, ft bgl
1	1,940 to 1,969
2	1,814 to 1,843
3	1,717 to 1,747
4	1,591 to 1,620

ft bgl - feet below ground level gpm - gallons per minute

With the exception of the lower-most zone which did not have a lower bentonite seal, the construction of each zone consisted of a bentonite seal below the sample tool, nominal 3/8-in. rounded gravel around the tool screen, and bentonite seal above the gravel (Fig. 4). JSAI representatives determined when the bentonite in the borehole was hydrated by monitoring a sample at the surface that was being hydrated with drilling fluid. Gravel was not placed around the screen until the lower bentonite seal was hydrated. After pumping and sampling of the zone, the tool was pulled up to the next specified depth, the borehole filled with 3/8-in. gravel to the required depth, and the process repeated.

Once the upper bentonite seal was hydrated, 2-7/8-in. steel air-line was staged in 300-ft lengths to a depth of approximately 1,400 ft bgl. After each 300-ft section was installed, the drilling fluid was air-lift pumped out until little or no fluid was produced. Once 1,400 ft of air-line was installed, an attempt was made to air-lift each zone for at least 5 hours, except for Zone 3, which the contractor decided to skip air-lifting and go directly to pumping.

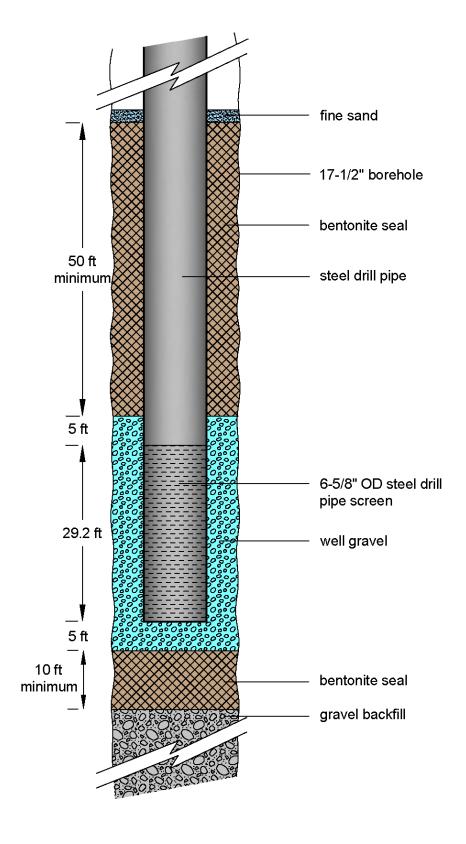


Figure 4. Schematic diagram showing generalized configuration for discrete-interval zone sampling, Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico.

After air-lift development, a Baker Hughes FSB3DB 66-HP submersible pump was installed to approximately 1,350 ft bgl and purging of the zones began. Purged fluid was monitored for clarity, temperature, pH, and conductance. Pumping rate was monitored using an inline flow meter calibrated for 5 to 40 gpm, and confirmed by time and volume measurements conducted by the Contractor. The zones were pumped until at least 4.5-tool volumes from static water level had been purged, field water-quality parameters stabilized, and no drilling fluid was evident in the produced water. Sample intervals with pumping times, rates, and volume purged are summarized in Table 5.

During pumping, 1 gallon of water was collected every hour to be used as a backup for filling the sample bottles to be submitted to the analytical lab in case the bentonite seals failed. Before the pump was shut off, samples were collected for submission to Hall Environmental Analysis for chemical analysis. The results of these analyses are presented in Table 6; copies of the laboratory zone water-quality results are provided as Appendix E.

During air-lifting and pumping of the zones, the fluid level in the conductor casing was monitored for evidence that the bentonite seals were holding. Representative water-quality samples were collected from Zones 1 and 3. Zone 1 was successfully airlifted, pumped for the required purge volume, and samples were collected for laboratory analysis on September 9, 2023. Zone 3 was developed and purged with a submersible pump, and samples were collected for laboratory analysis on September 17, 2023.

Zones 2 and 4 were not able to be successfully sampled for various reasons. Multiple attempts were made to obtain a competent seal at Zone 2; however, every time the compressor was turned on, the upper seal would fail. The seal for Zone 4 was installed and the zone was developed by air-lift pumping. However, the zone produced excessive amounts of sediment and a representative sample could not be collected due to the pump becoming sand locked.

Table 6. Discrete-interval sampling zones and purge volumes, City of Rio Rancho Well 9R (RG-26259-POD3)

zone	actual depth sampled, ft bgl	air-lift time (air on), min	pumping time, min	nominal pumping rate, gpm	volume purged, gal
1	1,940 to 1,969	272	571	11	7,228
3	1,717 to 1,747	0	678	10	7,224

ft bgl - feet below ground level

gpm - gallons per minute

The high turbidity of the water from Zone 3 biased the sample results with respect to TDS, iron, manganese, and lead concentrations. Field measurements of specific conductance at Zone 3 near the end of purging generally ranged from 360 to 370 micromhos per centimeter (µmhos/cm). Per our communication with the laboratory, to potential for the upward bias in concentrations for various parameters was verified.

Table 7. Summary of water-quality data from discrete-interval zone sampling, City of Rio Rancho Well 9R (RG-26259-POD3)

constituent ui		Zone 1: 1,940-1,969	Zone 3: 1,717-1,747	NMED DWB MCL standard
date of collection		9/9/23, 17:00	9/17/23, 08:00	
pН	pH units	8.78	8.48	6.5 to 8.5 ^a
hardness	mg/L	14	190	no standard
alkalinity	mg/L	111.2	140	no standard
bicarbonate	mg/L	102.2	4	no standard
carbonate	mg/L	8.960	136	no standard
conductivity	μmhos/cm	350	480	no standard
total dissolved solids (TDS)	mg/L	210	1,580	500 ^a
turbidity	NTU	26	2,000	5
chloride	mg/L	5.2	7.7	250 ^a
fluoride	mg/L	0.55	0.92	2ª to 4
sulfate	mg/L	41	76	250 ^a
antimony	mg/L	< 0.0010	< 0.0010	0.006
arsenic (total/ dissolved)	mg/L	0.10/0.086	0.017/0.0072	0.010
barium	mg/L	0.046	0.95	2.0
beryllium	mg/L	< 0.00050	0.0038	0.004
cadmium	mg/L	< 0.00050	< 0.00050	0.005
calcium	mg/L	5	49	no standard
chromium	mg/L	0.0066	0.083	0.1
copper	mg/L	0.0066	0.29	1.0 ^a
iron	mg/L	< 0.020	37	0.3ª
lead	mg/L	0.00057	0.029	0.015
magnesium	mg/L	< 1	15	no standard
manganese	mg/L	< 0.0010	0.72	0.05ª
mercury	mg/L	< 0.00020	< 0.00020	0.002
nickel	mg/L	0.037	0.47	no standard
potassium	mg/L	2	16	no standard
selenium	mg/L	< 0.0010	0.0024	0.05
sodium	mg/L	71	110	no standard
thallium	mg/L	< 0.00025	0.00033	0.002
uranium	mg/L	0.0010	0.0097	0.030
gross alpha	pCi/L	2.40 ± 1.61	41.7 ± 13.4	15
gross beta	pCi/L	1.87 ± 0.873	21.0 ± 6.22	50 ^b
radium-226	pCi/L	0.246 ± 0.580	0.465 ± 0.707	5 (aamh: 1)
radium-228	pCi/L	0.0839 ± 0.345	0.702 ± 0.382	5 (combined)

^a - national secondary drinking water standard (non-enforceable guidelines)

NMED DWB MCL - NM Environment Dept-Drinking Water Bureau maximum contaminant level

bold exceeds NMED DWB MCL μmhos/cm - micromhos per centimeter mg/L - milligrams per liter el pCi/L - picoCuries per liter

b - NMED DWB defined level below which the equivalent radiation is below EPA mandated radiation threshold of 4 mrem/year

6.6 Production Well Final Design

After a review of drill cuttings, geophysical logs, and zone field and laboratory water-quality results, the final recommended design for Well 9R was changed to limit the production of high concentrations of arsenic documented in Zone 1 so that the existing arsenic treatment plant could optimally treat the water. The total depth of the well was shortened from the proposed depth of 2,005 ft bgl to 1,885 ft bgl. Correspondingly, the bottom of the screen interval was raised from the proposed depth of 1,995 ft bgl to 1,880 ft bgl. Figure 5 is completion diagram of the final City of Rio Rancho Well 9R.

6.7 Reaming the Pilot Hole

On October 23, 2023, the Contractor began reaming the 17-1/2-in. pilot hole to 28-in. using a 28-in. diameter mill-tooth tri-cone hole-opener. The drilling equipment, methods, and drilling fluid program were the same as for the pilot hole. Drilling fluid properties were monitored and maintained by the Contractor. The 28-in. diameter reaming pass was completed to a total depth of 1,950 ft bgl on November 5, 2023. A caliper log of the reamed borehole was performed in order to evaluate the condition of the hole and to establish an estimate of the annular volume (copies of caliper and deviation logs of reamed borehole are provided as Appendix F).

A cement seal was installed November 8, 2023 from 1,950 to 1,890 ft bgl to prevent water lower in the aquifer from upwelling in the borehole and increasing arsenic concentration.

6.8 Casing Installation

Casing installation took place from November 9 to 11, 2023. In preparation for casing gravel-pack and cement plug installation, 2-5/8-in. steel tremie tubing was set to 1,858 ft bgl and suspended from the rig floor. Blank casing consisted of 18.625-in. OD, 0.375-in. wall, high-strength low-alloy steel pipe conforming to ASTM A139, and 18-in. OD ASTM A606 Type 4 and Type 304L stainless-steel (ASTM A778) specifications. A dielectric coupling was installed from 1,098 to 1,100 ft bgl between the high-strength low-alloy and stainless-steel casing. Screen consisted of 18 in. nominal diameter Type 304L stainless-steel wire-wrapped screen with a slot width of 0.045 in., and was manufactured and supplied by Roscoe Moss of Los Angeles, California. Casing joints were supplied in nominal 40-ft lengths, with welding collars for field assembly. All welding was performed by certified welders.

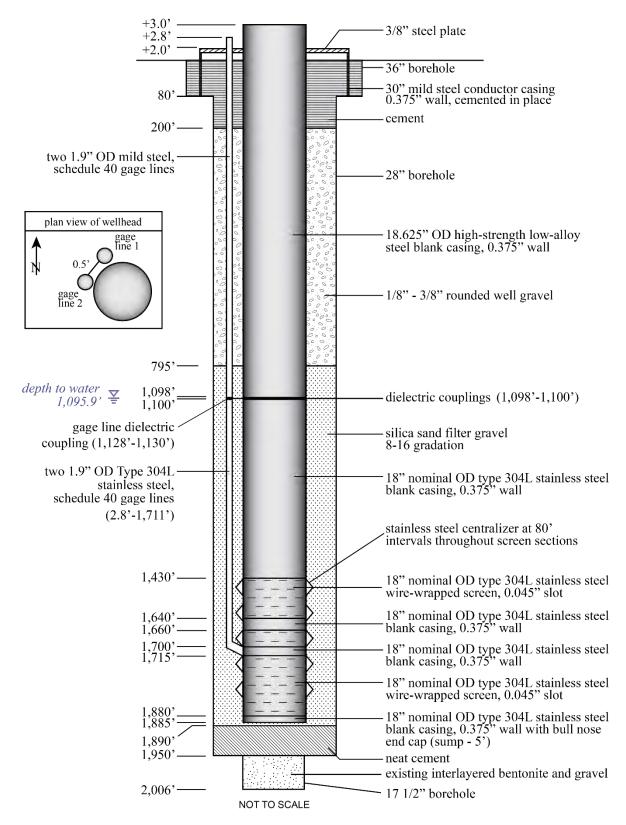


Figure 5. Well completion diagram, City of Rio Rancho Well 9R (RG-26259-POD3), completed November 2023, New Mexico.

During casing installation, centralizers were welded to the perforated section of the casing string every 80 ft to provide standoff from the borehole wall. Two 1.9-in.-diameter gage lines make gradual transitions into the nominal 18-in. casing string between 1,700 to 1,715 ft bgl (see Fig. 5). The upper portion of the gage lines are schedule 40 mild steel, and the lower portion of the gage lines are schedule 40 Type 304L stainless-steel. Dielectric couplings were installed between the two metal types. The gage lines are attached to the casing string by welding each coupling to the outside of the 18-in. casing, or at the casing joint. Total depth to the bottom of the casing string is 1,885 ft bgl.

6.9 Filter Gravel, Gravel Backfill, and Annular Seal Installation

In preparation for filter gravel installation, the borehole fluid was thinned back and conditioned with clear water. Once the viscosity of the drilling fluid reached about 30 sec/qt, gravel packing commenced.

The filter gravel consisted of 8-16 gradation PW Gillibrand® silica sand. Gravel backfill consisted of 1/8- to 3/8-in. diameter silica-based gravel. Both gravels were installed by pumping down the tremie tubing with municipal water. As the annulus filled, the gravel level was monitored by tagging with the tubing. As the annulus was filled with gravel, the tremie tubing would be removed approximately 30 ft at a time. A wire-line tagger was also periodically used to verify depth to gravel.

Total filter gravel pack placed was 82.6 cubic yards, which brought the gravel level up to 795 ft bgl and which represents 93 percent of the theoretical logged annulus volume. Gravel backfill was installed above the filter gravel to a depth of 200 ft bgl. Cement was then placed in the annulus through tremie tubing using positive displacement methods from 196 ft bgl to surface.

6.10 Alignment Survey

To ensure the casing was installed sufficiently and plumb to receive a line-shaft turbine pump, an alignment survey was conducted on December 10, 2023 by the Contractor. The alignment tool was 15-3/4-in. OD and was approximately 44 ft in length. The tool was run the full length of the casing and did not encounter any constrictions.

7.0 WELL DEVELOPMENT

7.1 Air-Lift Pumping

Initial well development consisted of open-ended reverse air-lift pumping with the air-line set progressively deeper in order to slowly remove drilling fluid from the well, limit hydraulic loading on the casing above the water table, and introduce flow into the well.

The next stage of development consisted of zoned swabbing and reverse air-lift pumping. The swab tool consisted of a 22-ft section of drill pipe with openings of approximately 2-in. spaced throughout the pipe, fitted with a rubber swab disc at each end and in the center of the tool. A 1,170-cfm x 350-psi air compressor was used for zoned air-lift pumping development. The development tool was run on drill pipe.

The well was developed by zoned swabbing and reverse air-lift pumping in two complete passes. Initially, the swab tool was set at the top of the screen, and the development proceeded downward to remove drilling fluid and fines from the gravel pack, repair formation damage, and to initiate flow into the well. After completion of the initial pass, the well was developed from the bottom up by swabbing and reverse air-lift pumping. The operational procedure for zoned air-lift development was to initiate discharge with the air compressor, and, as the produced water started to clear, raise and lower the swab tool. This process was repeated until discharge remained relatively clear, at which time, the tool was moved to the next zone.

Specific conductance values of discharged water produced from air-lift pumping ranged from an initial value of 1,040 to a low of 294 microsiemens per centimeter (μ S/cm), with pH between 8.9 and 7.0. Specific conductance was generally about 330 μ S/cm with a pH of about 8.4 toward the end of air-lift development.

7.2 Development by Bailing

Well development by bailing was performed using a 9.7 ft long, 14-in. diameter bailer. The general procedure was to repeatedly run the bailer to the bottom of the well, remove the bailer, and empty the fluid out. Bailing speeds were at least 300 ft/min.

7.3 Development by Pumping

During all development and test pumping, water levels, pumping rates, and discharge characteristics were monitored and recorded. Water levels were measured with a Contractor-supplied In-Situ 2,000-ft-long well sounder calibrated to 0.01-ft increments. Pumping for development and aquifer testing was accomplished with a 600-hp submersible pump, set at approximately 1,387 ft bgl. Pumping rates were measured with a McCrometer electromagnetic instantaneous and totalizing flow meter, that was regulated by a variable frequency drive. A gate valve was used to help maintain backpressure on the meter. Sand content was measured with a Rossum centrifugal sand sampler.

Development by pumping and surging consisted of pumping the well, initially at relatively low rates, and as water cleared and sediment production decreased, stopping the pump and allowing water to surge down the drop-pipe through the pump and into the well. Pumping and surging is a development technique used to help break up remaining drilling fluid wall cake, repair formation damage, and promote settling of the gravel pack. Following each surge, the pump was then restarted at the same or a higher rate, and as development continued, the pumping rate was increased. rates ranged from 380 gpm to about 1,150 gpm.

8.0 AQUIFER TESTING

8.1 Aquifer Testing Methods

After well development was complete, the water level in Well 9R was allowed to recover. Pumping tests consisted of a 300-minute step-drawdown test and a constant-rate test of about 65 hours. Results of the pumping tests are described in the sections below. Water levels were measured with a Contractor-supplied In-Situ 2,000-ft well sounder calibrated to 0.01-ft increments, and a 500-psi pressure transducer and data logger.

8.2 Step-Drawdown Test

The first step-drawdown pumping test was attempted on December 22, 2023. The discharge piping was configured to pump to the spillway just outside of the site location. The plan was to pump the well for five pumping steps. Unfortunately, the generator failed immediately after the third pumping step.

The second and final step-drawdown pumping test was performed on December 23, 2023. The pre-pumping water level measured in the well was 1,095.9 ft bgl. There were five, 60-minute steps, at rates that increased in 100-gpm increments from 600 gpm to 1,000 gpm (Fig. 6). Specific capacity at the end of each step ranged from 7.36 gpm/ft of drawdown at 600 gpm, to 7.01 gpm/ft of drawdown at 1,000 gpm.

8.3 Well Efficiency

The yield of the well, in terms of specific capacity, is governed both by the properties of the aquifer and the efficiency of the well. Well efficiency is a measure of the effectiveness of the well in transmitting water from the aquifer to the pump.

Any well is more efficient at a lower pumping rate than it is at a higher rate because a smaller proportion of the drawdown is attributable to turbulent-flow losses that are an exponential function of the pumping rate. Efficiency may be calculated as the ratio between the projected specific capacity at a pumping rate of zero (at which the characteristics of the well have no effect) and at an actual pumping rate (Bierschenk, 1964). Table 7 also provides the calculated efficiency at each of the pumping rates from the step-drawdown test.

Table 8. Summary of December 23, 2023 step-drawdown pumping test data, City of Rio Rancho Well 9R (RG-26259-POD3)

step number	pumping rate, gpm for 60 minutes starting	gpm for after each step,		total sand production during step, ppm	estimated efficiency, percent
1	600	81.55	7.36	0.9	93.5
2	700	97.38	7.19	0.9	92.5
3	800	112.37	7.12	0.0	91.5
4	900	127.33	7.07	0.0	90.5
5	1,000	142.70	7.01	0.9	89.6

ft bgl - feet below ground level gpm - gallons per minute

gpm/ft - gallons per minute per foot of drawdown ppm - parts per million by volume

8.4 Constant-Rate Pumping Test

The objective of the constant-rate test was to pump the well at 950 gpm for 7 days. The first constant-rate pumping test began on December 24, 2023. On December 26 after about 3,440 minutes, the transducer failed and water levels were collected using an In-Situ well sounder, while waiting on another transducer to arrive and be installed. On December 27, the generator failed after 4,338 minutes, and was restarted within about 21 minutes. Per JSAI conversations with the Rio Rancho Utilities, it was decided to continue the test. The generator failed again on December 27 after about 4,445 minutes, and could not be restarted. The transducer had still not arrived at the time of the second failure of the generator.

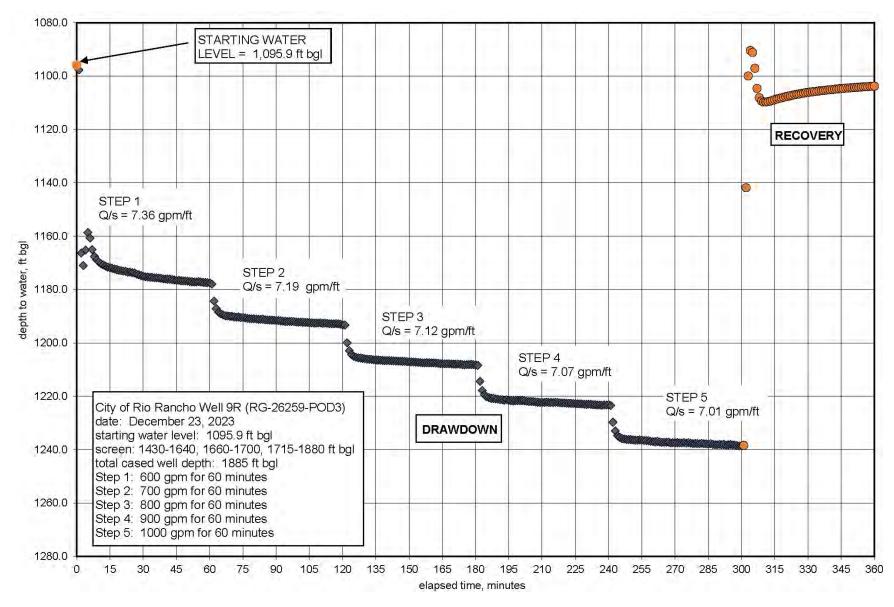


Figure 6. Graph showing transducer-recorded drawdown and partial-recovery data from the step-drawdown pumping test, Well 9R, City of Rio Rancho, New Mexico.

The constant-rate test was restarted on December 28. Prior to starting the test, a new transducer was installed and began recording water-level measurement at 1-minute intervals. The generator that failed during the initial attempt to complete the constant-rate test was removed from the site and two additional generators were setup for the test. One generator was to be used as a backup.

For the second test, the well was pumped at 950 gpm and the test lasted 3,890 minutes. The well had been allowed to recover for approximately 22.5 hours prior to beginning the test. On December 30 after 3,739 minutes of pumping, the primary generator failed. The backup generator was operational within about 15 minutes and pumping continued. On December 30, 2023, 3,890 minutes after the test started, the backup generator failed and recovery water-level measurements were collected.

JSAI and Rio Rancho Utilities discussed the potential of restarting the constant-rate pumping test. Given the difficulties keeping generators operational for extended periods of time on this project, and that the slope of the drawdown data had stabilized prior to the first generator failure, it was decided to continue collecting recovery data and not attempt another test.

Drawdown and recovery data from the pumping test started on December 28 were plotted on a semi-logarithmic plot (Fig. 7), and the data were analyzed using the Cooper-Jacob (1946) "straight-line" method. The calculated transmissivity of the portion of the aquifer open to the well was 3,048 ft²/day from the drawdown curve, and 3,554 ft²/day from the recovery curve. The specific capacity of Well 9R was 6.41 gpm/ft of drawdown for the lowest drawdown recorded over the entire pumping test. A summary of constant-rate pumping test data is provided as Table 8.

Sediment production as measured with a Rossum Sand Tester was low throughout the entire pumping period. In general, sediment production is greatest within the first 20 to 30 minutes of pumping. Cumulative sediment production is summarized in Table 9.

Table 9. Summary from December 28 to 30, 2023 constant-rate pumping test, City of Rio Rancho Well 9R (RG-26259-POD3)

average pumping test rate, gpm	starting water level, ft bgl	lowest water level, ft bgl	total drawdown, ft	specific capacity (Q/s), gpm/ft	transmissivity, pumping, ft²/day	transmissivity, recovery, ft²/day
950	1,095.9	1,246.11	143	6.33*	3,048	3,554

^{*} prior to first generator failure at 3,739 mins. gpm - gallons per minute

ft bgl - feet below ground level gpm/ft - gallons per minute per foot of drawdown

Table 10. Summary of cumulative sediment production during December 28 to 30, 2023 constant-rate pumping test, City of Rio Rancho Well 9R (RG-26259-POD3)

time since pumping began, mins	cumulative sediment production, ppm	time since pumping began, mins	cumulative sediment production, ppm
20	5.28	1,050	0.25
40	3.3	1,980	0.13
60	2.64	2,460	0.13
190	0.83	2940	0.11
780	0.27	3480	0.09

ppm - parts per million

8.5 Pump Capacity and Setting Depth

The non-pumping water level for the original Well (RG-26259) was 1,082 ft bgl on October 2, 1984 (Denney-Gross, 1984). The non-pumping water level in February 2000 was reported to range from about 1,118 to 1,122 ft below a measuring point of unreported height (Glorieta Geoscience, 2000). Assuming the non-pumping water level in 2000 was 1,120 ft bgl, the decline from October 1984 to February 2000 was 38 ft; an average of about 2.2 ft/yr. The water level in Well 9R was 1,095.90 ft bgl prior to beginning test pumping.

Well 9R has a higher specific capacity compared to original Well 9. For comparison, the specific capacity of Well 9R at a pumping rate of 1,000 gpm was 7.01 gpm/ft of drawdown, and for Well 9 at a pumping rate of 1,016 gpm was about 5.5 gpm/ft of drawdown.

Future pumping water levels were projected using the following assumptions: an aquifer transmissivity of 3,301 ft²/day (24,692 gpd/ft), which is the average of the transmissivity calculated from the pumping and recovery data, and short-term specific capacity as interpolated from the step-test data, and projected specific capacity at higher rates using projections based on Bierschenk. The pumping water levels assume a regional drawdown of 2.5 ft/yr in order to provide a conservative estimate of potential impacts to the aquifer from long-term pumping. Assumptions with the long-term pumping water-level calculations include: no increase or decrease in Rio Grande contribution, no changes in river base level, no change in transmissivity over time, and no change in well efficiency over time.

Projected long-term pumping water levels with the well pumped 70 percent of the time and 100 percent of the time are provided in Table 9. The pumping water levels assume an initial non-pumping water level of 1,096 ft bgl.

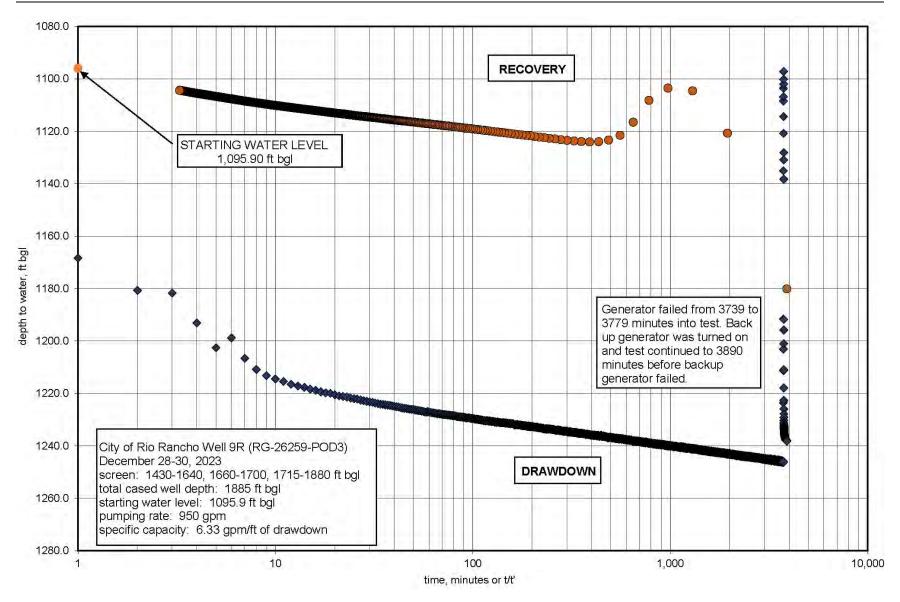


Figure 7. Semi-logarithmic plot of transducer-recorded drawdown and recovery water-level data from the 3,891-min constant-rate pumping test, Well 9R (RG-26259-POD3), City of Rio Rancho, New Mexico.

Table 11. Projected pumping water levels, City of Rio Rancho Well 9R (RG-26259-POD3)

pumping rate,	well, assumi	rawdown due to ng 70 percent p nal drawdown o	umping time	long-term drawdown due to pumping of well, assuming 100 percent pumping time and a regional drawdown of 2.5 ft/yr, ft			
gpm	1 year	10 years	20 years	1 year	10 years	20 years	
800	1,233	1,262	1,288	1,243	1,274	1,301	
900	1,251	1,280	1,307	1,262	1,294	1,322	
1,000	1,269	1,299	1,326	1,281	1,314	1,342	
1,100	1,288	1,319	1,346	1,301	1,336	1,364	
1,200	1,307	1,338	1,366	1,321	1,357	1,385	
1,300	1,327	1,359	1,387	1,342	1,379	1,408	
1,400	1,346	1,379	1,408	1,363	1,401	1,430	

bold indicates pumping water level too close to pump if pump placed above top of screen gpm - gallons per minute

Assuming the pump intake is installed at a depth of about 1,420 ft, the well is capable of producing up to 1,400 gpm for at least 5 years if the well is pumped 100 percent of the time. This pumping rate and pumping schedule will allow the City to maximize its water right associated with this point of diversion. If the well is pumped 100 percent of the time for 1 year, the corresponding diversion would be 2,259.8 ac-ft. Greater pumping rates could be obtained if the pump were placed in the blank section from 1,640 to 1,660 ft bgl.

We recommend using variable frequency drive (VFD) to provide operational flexibility and reduced power consumption when pumping at lower quantities. A water-level transducer that will also govern the pump should also be used to ensure that the water level stays above the required NPSH need for safe pump operation.

Once this well is equipped and used to provide water for municipal supplies, JSAI recommends that pumping and non-pumping water levels be collected at least quarterly, including the pumping rate at the time of measurement. This will facilitate in identifying and remedying problems with water production should they occur over time. Data should be reviewed frequently to determine if changes in pumping rate or duration are needed.

8.6 Water Quality

Samples for water-quality analysis were collected by JSAI Staff certified by the NMED to collect samples. Samples were collected on December 27, and 28 in bottles with appropriate preservatives provided by Eurofins Environmental Testing (Eurofins). Samples were collected on

two separate days because Eurofins failed to provide all required sample bottles with the original sample kit. Samples were submitted to Eurofins in Albuquerque for analysis. A summary of field water-quality results is provided as Table 10; laboratory analytical results are provided as Table 11.

The arsenic concentration of 0.048 mg/L is above the NMED DWB primary drinking water standard of 0.010 mg/L. However, water produced from this well will be treated by the existing arsenic treatment plant to reduce the arsenic concentration to below the standard prior to distribution.

The total dissolved solids (TDS) concentration was 241 mg/L, below the NMED DWB secondary drinking water standards. The hardness was 14.106 mg/L, and is considered soft. The turbidity of 14 nephelometric turbidity units was above the NMED DWB primary drinking water standard of 5. The elevated turbidity is surprising given that the sediment produced from the well was very low, suggesting that the turbidity is associated with sediment that is too small to be captured by the Rossum Sand Tester. The pH of 8.64 (unitless) exceeds the secondary NMED DWB drinking water standard of 8.5, and will be adjusted at the arsenic treatment plant. The national secondary drinking water standards are non-enforceable standards.

Water produced from Well 9R had non-detectable concentrations of purgeable organics as determined by EPA method 524, non-detectable concentrations of selected regulated synthetic organic chemicals for public drinking water systems (various EPA methods), carbamates (EPA method 531.2), and non-detectable concentrations of polychlorinated dibenzodioxins and organobromides as determined by high-resolution mass spectrometry (mainly EPA methods 1613B, 504.1, and 524.1). Concentrations of all other water-quality parameters including metals, anions, asbestos, radionuclides (see Table 11) were below NMED DWB drinking water standards. A copy of the complete laboratory reports for Well 9R are included in Appendix I.

Table 12. Summary of field water-quality results, City of Rio Rancho Well 9R (RG-26259-POD3)

parameter	unit	Well 9R	NMED DWB MCL standard				
field parameters December 27, 2023							
conductivity	μmhos/cm	310					
рН	standard units	9.23	6.5 – 8.5 (a)				
average temperature	°F	79.2					

(a) - aesthetic standard, non-enforceable

NMED DWB - New Mexico Environment Dept/Drinking Water Bureau

MCL - maximum contaminant level

 $\begin{tabular}{ll} \textbf{bold} & \text{indicates above the MCL} \\ \mu mhos/cm - micromhos per centimeter \end{tabular}$

Table 13. Summary of water-quality analytical results, City of Rio Rancho Well 9R (RG-26259-POD3)

constituent	unit	City of Rio Rancho Well 9R	NMED DWB MCL standard
laboratory parameters	: general chem	nistry, trace metals and	radionuclides
alkalinity (as CaCo ₃)	mg/L	109.4	no standard
color	c.u.	10.0	15ª
odor	TON	< 1.0	3ª
foaming agents (surfactants)	mg/L	< 0.0500	0.5^{a}
рН	units	8.64	6.5 to 8.5 ^a
total dissolved solids (TDS)	mg/L	241	500 ^a
hardness (calculated)	mg/L	14.106	no standard
bicarbonate	mg/L	102.3	no standard
carbonate	mg/L	7.120	no standard
turbidity	NTU	14	5
chloride	mg/L	4.1	250ª
fluoride	mg/L	0.41	2ª to 4
nitrate	mg/L	1.6	10
nitrite	mg/L	< 0.10	1
sulfate	mg/L	48	250 ^a
antimony	mg/L	< 0.0010	0.006
arsenic (total)	mg/L	0.048	0.010
aluminum	mg/L	0.37	0.05 to 0.2 ^a
barium	mg/L	0.055	2.0
beryllium	mg/L	< 0.0020	0.004
cadmium	mg/L	< 0.0020	0.005
calcium	mg/L	4.0	no standard
chromium	mg/L	0.0072	0.1
copper	mg/L	0.0065	1.3 (al)
cyanide	mg/L	< 0.0100	0.2
iron	mg/L	0.19	0.3ª
lead	mg/L	< 0.00050	0.015 (al)
magnesium	mg/L	< 1.0	no standard
manganese	mg/L	0.0045	0.05^{a}
mercury	mg/L	< 0.00020	0.002
potassium	mg/L	1.7	no standard
selenium	mg/L	0.0011	0.05
silver	mg/L	< 0.0050	0.10^{a}
sodium	mg/L	68	no standard
thallium	mg/L	< 0.00025	0.002

Table 13. Summary of water-quality analytical results, City of Rio Rancho Well 9R (RG-26259-POD3) (continued)

		1			
constituent	unit	City of Rio Rancho Well 9R	NMED DWB MCL standard		
laboratory parameters: ger	eral chem	nistry, trace metals and	radionuclides		
uranium (dissolved)	mg/L	0.0013 0.03			
gross alpha	pCi/L	3.59	15		
gross beta	pCi/L	2.30	50 ^b		
radium-226	pCi/L	0.108	F (combined)		
radium-228	pCi/L	0.715	5 (combined)		
laboratory	paramete	rs: organic chemicals			
acrylamide	μg/L	< 0.100	TT		
alachlor	μg/L	< 0.200	2		
atrazine	μg/L	< 0.100	3		
benzene	μg/L	< 0.50	5		
benzo(a)pyrene (pahs)	μg/L	< 0.0200	0.2		
carbofuran	μg/L	< 0.900	40		
carbon tetrachloride	μg/L	< 0.50	5		
chlordane	μg/L	< 0.200	2		
chlorobenzene	μg/L	< 0.50	100		
2,4-D	μg/L	0.100	70		
dalapon	μg/L	< 1.00	200		
1,2-dibromo-3-chloropropane (DBCP)	μg/L	< 0.0200	0.2		
o-dichlorobenzene	μg/L	< 0.50	600		
p-dichlorobenzene	μg/L	< 0.50	75		
1,2-dichloroethane	μg/L	< 0.50	5		
1,1-dichloroethylene	μg/L	< 0.50	7		
cis-1,2-dichloroethylene	μg/L	< 0.50	70		
trans-1,2-dichloroethylene	μg/L	< 0.50	100		
dichloromethane	μg/L	< 0.50	5		
1,2-dichloropropane	μg/L	< 0.50	5		
Di(2-ethylhexyl) adipate	μg/L	< 0.600	400		
Di(2-ethylhexyl) phthalate	μg/L	< 0.600	6		
dinoseb	μg/L	< 0.200	7		
dioxin (2,3,7,8-tcdd)	pg/L	< 10	30		
diquat	μg/L	< 0.400	20		
endothall	μg/L	< 9.00	100		
endrin	μg/L	< 0.0100	2		
epichlorohydrin	μg/L	< 0.500	TT		

Table 13. Summary of water-quality analytical results, City of Rio Rancho Well 9R (RG-26259-POD3) (concluded)

constituent	unit	City of Rio Rancho Well 9R	NMED DWB MCL standard					
laboratory parameters: general chemistry, trace metals and radionuclides								
ethylbenzene	μg/L	< 0.50 700						
ethylene dibromide	μg/L	< 0.0100	0.05					
glyphosate	μg/L	< 5.00	700					
heptachlor	μg/L	< 0.0400	0.4					
heptachlor epoxide	μg/L	< 0.0200	0.2					
hexachlorobenzene	μg/L	< 0.100	1					
hexachlorocyclopentadiene	μg/L	< 0.100	50					
lindane	μg/L	< 0.0200	0.2					
methoxychlor	μg/L	< 0.100	40					
oxamyl (vydate)	μg/L	< 2.00	200					
polychlorinated biphenyls (pcbs)	μg/L	< 0.500	0.5					
pentachlorophenol	μg/L	< 0.0400	1					
picloram	μg/L	< 0.100	500					
simazine	μg/L	< 0.0700	4					
styrene	μg/L	< 0.50	100					
tetrachloroethylene	μg/L	< 0.50	5					
toluene	μg/L	< 0.50	1000					
toxaphene	μg/L	< 1.0	3					
2,4,5-TP (silvex)	μg/L	< 0.200	50					
1,2,4-trichlorobenzene	μg/L	< 0.50	70					
1,1,1-trichloroethane	μg/L	< 0.50	200					
1,1,2-trichloroethane	μg/L	< 0.50	5					
trichloroethylene	μg/L	< 0.50	5					
vinyl chloride	μg/L	< 0.50	2					
xylenes (total)	μg/L	< 0.50	10000					
laborator	y paramet	ters: bacteriological						
E. coli	p-a	a						
total coliform	p-a	a						

^a - national secondary drinking water standard (non-enforceable guidelines)

• Acrylamide = 0.05% dosed at 1 mg/L (or equivalent)

• Epichlorohydrin = 0.01% dosed at 20 mg/L (or equivalent)

(al) - action level that, if exceeded, requires water treatment NMED DWB - NM Environment Department/Drinking Water Bureau

mg/L - milligrams per liter
μg/L - micrograms per liter
pCi/L - picoCuries per liter
c.u. - concentration units
pg/L - picograms per liter
TON - threshold odor number
μmhos/cm - micromhos per centimeter
NTU - nephelometric turbidity units
p-a - present/absent
MCL - maximum contaminant level
bold indicate exceedance of MCL

b - NM Environment Department Drinking Water Bureau defined level below which the equivalent radiation is below EPA mandated radiation threshold of 4 mrem/yr

TT - Each water system must certify, in writing, to the state (using third-party or manufacturer's certification) that when acrylamide and epichlorohydrin are used to treat water, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows:

9.0 DISINFECTION

The well was disinfected during gravel-pack installation, and during test pumping per AWWA 100-15 and AWWA C654-13. During thinning back of the drilling fluid, prior to gravel-pack installation, the Contractor added about 900 gallons of 10-percent liquid sodium hypochlorite, which was circulated throughout the annulus. The Contractor disinfected the well again following the alignment survey with a solution of calcium chloride and water with a concentration ranging from 200 to 225 mg/L. The solution was used to rinse the casing and gage lines, and was distributed throughout the water column using tremie pipe and then swabbed to distribute the disinfectant. The sodium and calcium hypochlorite were NSF approved.

9.1 Video Survey

On January 25, 2024, Hydro performed a closed-circuit color video inspection of the entire depth of the well. Approximately 26 days passed after development pumping, providing ample time for turbidity in the water column to settle to a large degree. The camera was run the length of the well from ground surface to an observed depth of 1,879.5 ft bgl, where sediment was present in the well. Total length of sediment in the bottom of the well was 5.6 ft, 0.5 ft of which covers the bottom of the screen.

The camera was equipped with a wide-angle (fish eye) lens directed downward, with right-angle (side-scan) capability. The video provides a downward view of the well through the casing, and periodic side-scan views of joints, including the dielectric coupling. A side-scan survey was performed to total depth, with 360-degree rotation at each screen joint, and the blank casing section within the screen where the gage lines enter the well casing. Some intermittent lighting malfunctions and elevated turbidity below the water level for some distance degraded visibility; however, no issues with integrity of the completed well were observed. All welds, casing, gage-line transitions into the casing, and screens looked good. A copy of the video survey is provided as Appendix G.

9.2 Well Completion and Site Cleanup

The casing, gage line, and gravel-feed line were capped at approximately 2 ft above ground level, and may be modified when Well 9R is connected to the City of Rio Rancho distribution system.

10.0 REFERENCES CITED

- Bierschenk, W.H., 1964, Determining well efficiency by multiple step-drawdown tests: International Association of Scientific Hydrology, Publication 64.
- Cooper, H.H., Jr., and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Transactions of the American Geophysical Union, v. 27, pp. 526-534.
- Denney-Gross & Associates, Inc., 1984, Final Well Report Well No. RG 26259, Rio Rancho, New Mexico: consultant's report prepared for the City of Rio Rancho.
- Glorieta Geoscience, Inc., 2000, Rio Rancho Well #9 Testing Report: consultant's report prepared for Wilson Engineering.

Appendix A.

New Mexico Office of the State Engineer Well Record (RG-26259-POD3), City of Rio Rancho Well 9R

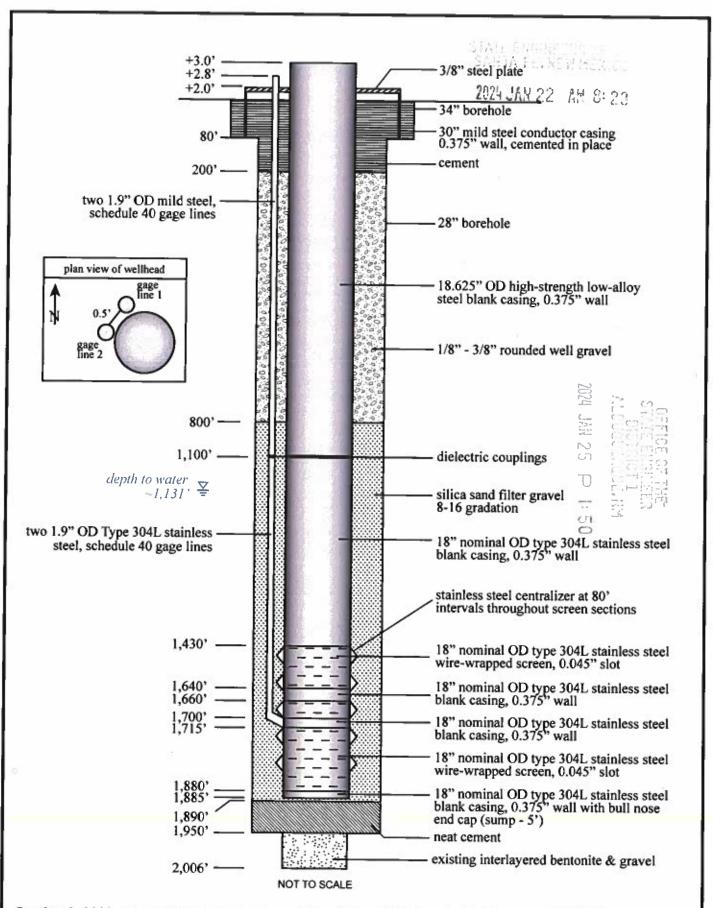
LOCATION

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

2024 JAN 22 AM 8: 23


PAGE 1 OF 2

WELL TAG ID NO.

	30.15												
NO	OSE POD NO Well-9R). (WELL NO	D.)		WELL TAG ID NO.	•		OSE F	ILE NO(:	S).		· · · · ·	
0CATI	WELL OWNER NAME(S) PHONE (OPTI-							•			-		
GENERAL AND WELL LOCATION	WELL OWN 3200 Civic			_				CITY Rio R	ancho		STA.	TE 87114	ZIP
Ę	WELL		D	EGREES	GREES MINUTES SECONDS					(12000	1	
LA	LOCATIO	N LA	TITUDE	35°	19'	23.0	334 _N	• ACC	URACY	REQUIRED: ONE TEN		A SECOND	2
ERA	(FROM GP	S) LO	NGITUDE	106°	06° 47' 6.3054 W * DATUM			UM REC	(UIRED: WGS 84	25	TEN!	1	
1. GEN	ı		NG WELL LOCATION T c, Rio Rancho, NM				IARKS – PLS	SS (SECTI	ION, TO	WNSHJIP, RANGE) WI	iere a	VAILABLE	1
	LICENSE NO		NAME OF LICENSE	D DRII I FR		-				NAME OF WELL DE	n i isle	COMBANY	
	WD-1		NAME OF EIGENSE	DRILLLER	Jim Hale							Resources	
	DRILLING ST		DRILLING ENDED	DEPTH OF CO	MPLETED WELL (F	I)	BORE HO		H (FT)	DEPTH WATER FIR			
	8/17/2	2023	1/4/2024		1,885'		2	2,006'			1,	110'	
NO	COMPLETED	O WELL IS:	ARTESIAN *add Centralizer info b		DRY HOLE SHALLOW (UNCONFINED) IN COM				IN COMI	WATER LEVEL IPLETED WELL 1,110' DATE STATIC MEASURED 12/31/2023			
ATI	DRILLING FLUID: AIR WUD ADDITIVES – SPECIFY:						Polyme						
DRILLING & CASING INFORMATION	DRILLING M	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER-SPECIFY: Flooded Re						d Rev	erse CHECK	HERE	IF PITLESS ADAF	TER IS	
INF	DEPTH	(feet bgl)	BORE HOLE	CASING	CASING MATERIAL AND/OR			CASING		CASING	CA	SING WALL	SLOT
ING	FROM	ТО	DIAM	(include e	GRADE (include each casing string, and		CON	CONNECTION TYPE		INSIDE DIAM.	Т	HICKNESS	SIZE (inches)
CAS			(inches)		sections of screen)		(add coup	ling diam	eter)	(inches)		(inches)	
30	0 80'	2,006'	34" 17.5"	•	A53 Grade B			/elded		29.25"		.375"	N/A
Ň	80'	1,950'	28"		Pilot hole HSLA			N/A /elded		N/A 18"	-	.375"	N/A N/A
III	00	1,750	28"	304	L Stainless Steel			/elded		17.25"	┼—	.375	0.045"
2. DE			28"		Steel & 304L SS			Welded		1.61"	\vdash	.145"	N/A
7				117110	- OKC1 & 307E BO			· Clucu		1.01		.143	IN/A
											├-		
											 		
	DEPTH	(feet bgl)	BORE HOLE	LIST ANNU	LAR SEAL MATER			L PACK	SIZE-	AMOUNT	•	метно	D OF
AL	FROM TO DIAM. (inches) **(if using Centralizers for Artesian wells- indicate the spacing b				below)	(cubic feet)		PLACEM					
ERI	0	80,	34"	12 sack Sand/Cement Slurry				189 Cu. Ft.		Pumped throug	h Tremmie		
TAT	0	200'	28"		24 Sack Neat Cement				510 Cu. Ft.			Pumped throug	h Tremmie
4R.	200'	800,	28"		1/8" X 3/8" Rounded Pea Gravel					1,933 Cu. Ft.		Pumped throug	h Tremmie
ŭ	800'	1,885'	28"	8-16 Silica Sand				3,495 Cu. Ft.		Pumped throug	h Tremmie		
ANNULAR MATERIAL	1,885'	1,950	28"		24 Sack N	leat Cen	nent			191 Cu. Ft.		Pumped throug	h Tremmie
พ่													
	OSE INTER	NAL USE						,		WELL RECORD	& LO	G (Version 09/2:	2/2022)_
FILE	NO.				POD NO	١.			TRN N	IO.			

	2000					5.47E F	MAKERS 1	TEN.
	DEPTH (:	feet bgl)	THICKNESS (feet)	INCLUDI	LOR AND TYPE OF MATERIA E WATER-BEARING CAVITIE tach supplemental sheets to full	S OR FRACTURE ZONES		
							Y	1
		15/49			1 (2017)		Y 1	1
							Y	1
							Y	1
							Y i	1
1							Y	1
HYDROGEOLOGIC LOG OF WELL		_		<u> </u>	See Attached	13.	Y	1
000		-	-				Y	1
) ro							Y i	
5							Y	+
070					(0.00		Y 1	
OG							Y	
YDR				-		<u> </u>	Y	
4. H							Y	
				97777			YN	
							Y	
		-		W0.11	\$ \$		Y U	
							Y 1	
1 2							Y 551	
							Y	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-B	EARING STRATA:	Te	OTAL ESTIMATE	D
	₽ PUMI	P □A	IR LIFT	BAILER	OTHER - SPECIFY:	ν	VELL YIELD (gpm	1):
ON	WELL TEST	TEST STAR	RESULTS - ATTA T TIME, END TIM	ACH A COPY (ME, AND A TA	OF DATA COLLECTED DURING BLE SHOWING DISCHARGE	NG WELL TESTING, INCLU AND DRAWDOWN OVER	DING DISCHARO	SE METHOD, RIOD.
TEST; RIG SUPERVISION	MISCELLAI	NEOUS IN	FORMATION: 10(tes	hours of raw @950 GPM	rhide pump surge. 8 hour step Static water level 1,110'. Pur	test at 400, 600, 800 and 1 mping water level 1,250' or	,000 GPM. 168 I 1 12/31/2023	our constant rate
EST;	DDDAFFALAN	IE(6) OF F	DILL DIG CLINES	VICOD/C) TT	T BDAUDEN ALAIME AV	Major of Maria Const	MINTON COME	THE A STATE OF THE
5. TI	Tyler Curtis	E(S) OF D	KILL RIG SUPER	V15UK(5) 1H2	AT PROVIDED ONSITE SUPER	(VISION OF WELL CONSTI	RUCTION OTHER	THAN LICENSEE:
VTURE	CORRECT R	ECORD O	F THE ABOVE D	ESCRIBED HO	THE BEST OF HIS OR HER K DLE AND THAT HE OR SHE V R COMPLETION OF WELL DI	VILL FILE THIS WELL REC	, THE FOREGOIN CORD WITH THE	G IS A TRUE AND STATE ENGINEER
6. SIGNATURE	for	Hal			Jim Hale		1/16/2024	
		SIGNAT	URE OF DRILLE	R / PRINT SI	IGNEE NAME		DAT	E
								20 mg = 100

FOR OSE INTERNAL USE	WR-20 WELL	RECORD & LOG (Version 09/22/2022)			
FILE NO.	POD NO. TRN 1		TRN NO.		
LOCATION		WELL TAG ID NO.	PAGE 2 OF 2		

October 9, 2023, Revised proposed well completion, City of Rio Rancho Replacement Well 9R, New Mexico.

DONEHOLE SPOD DATE: July 19, 2023
CLIENT: Huitt-Zollars 2021 141 22 41 6: 23
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: RLP
Notes: cuttings not washed, recorded wet
except for upper 80 ft which was drilled with
auger methods with some polymer and water

Contractor: Hydro Resources

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Depth, ft bgl	Description	
0-10	Sandy silt: sand, fine; caliche; minor gravel, sub rounded up to 2"	
10-20	Sandy silt: silt tan; sand, very fine grained	
20-30	Gravel sandy silt: 85% silt, tan; 10% sand, fine-grained, well sorted, tan; 5% gravel ~ ¼ to ½- ; in., angular; reacts to HCl	
30-40	Silty sand: 80% sand, fine grained, well sorted, tan; 20% silt; moist from water-injection; reacts to HCl.	
40-50	Gravel silty sandy: 75% sand fine grained, well sorted, tan; 22% silt, 3% gravel ~1/4 to ½-in., subangular; reacts to HCl.	
50-60	Sandy silty: 75% sand, fine grained, well sorted, tan; 25% silt; reacts to HCl	
60-70	Sandy silt: 70% silt, tan; 30% sand, fine grained, well sorted; reacts to HCl, moist from water added during drilling	
70-80	Sandy silt: 70% silt, tan; 30% sand, fine grained, well sorted; reacts to HCl, moist from water added during drilling	
80-90	Sandy gravel: 85% gravel, up to ¼ inch, subrounded to subangular, poorly sorted, varying compositions, varying color (red, black, white, tan); 15% sand, fine-med. grained, subrounded; mild reaction to HCl	
90-100	Sandy gravel: 85% gravel, up to ¼ inch, subrounded to subangular, poorly sorted, varying compositions, varying color (red, black, white, tan); 15% sand, fine-med. grained, subrounded; mild reaction to HCl	
100-110	Clayey sand: 60% sand, fine grained, tan; 40% clay, high plasticity, tan	
110-120	Gravelly sand: 80% sand, coarse, well sorted, subangular to subrounded, mostly quartz, with some mafics/feldspars, dark brown; 20% gravel, moderately sorted, subangular, mostly quartz and feldspar, up to ¼-in., white/opaque grains	
120-140	Clayey sand: 60% sand, fine-grained, tan; 40% clay, high plasticity	

Contractor: Hydro Resources

Drilling bit: 17.5-in. milltooth

Rig: 10031

BOREHOLE SPUD DATE: 8/24/2023	
CLIENT: Huitt-Zollars 2824 JAN 22 AM 8: 23	
PROJECT: Well 9R	
LOCATION: Rio Rancho	
BOREHOLE NAME: Well 9R	
GEOLOGIST: AKM/ZBC/FGS	
Notes: cuttings not washed, recorded wet	

Depth, ft bgl	Description
140-190	Gravelly sand: 80% sand, coarse, subrounded to well rounded, moderately sorted, mostly quartz with mafics and feldspars, up to ¼-in.; 20% gravel, moderately sorted, subrounded, brown to reddish brown, black, gray
190-200	Clayey sand: 60% sand, coarse grained, subangular, moderately sorted, mostly quartz with maffics & feldspars; 40% clay, high plasticity, tan; moderate reaction to HCl.
200-220	Gravelly sand: 80% sand, coarse grained, subrounded to rounded, moderately sorted, mostly quartz with mafics & feldspar; 20% gravel, moderately sorted, subrounded to subangular, tan, black, white, red grains; weak reaction to acid.
220-240	Gravelly sandy clay: 60% clay, high plasticity, brown/tan; 35% sand, subrounded to well-rounded, medium to coarse, moderately sorted, mostly quartz with mafics and feldspars; 5% gravel, subangular, moderately sorted, brown, red, black grains; mild reaction to acid.
240-250	Gravelly sand: 80% sand, coarse moderately sorted, sub to well rounded, mostly quartz with some mafics and feldspars, up to ¼-in.; 20% gravel, subangular to subrounded, moderate sorting, black/red/brown mafics and feldspars present; weak reaction to acid.
250-260	Gravelly sandy clay: 55% clay, high plasticity, tan; 40% sand, medium, moderately sorted, well rounded, mostly quartz with some mafics and feldspars; 5% gravel, subangular to subrounded, moderate sorting, black/red/brown; moderate reaction to acid.
260-270	Gravelly sand: 95% sand, coarse, well sorted, well rounded, mostly quartz with some mafics & feldspars; 5% gravel, subangular, moderate sorting, black/red/brown, mafics and feldspar; moderate reaction to HCl.
270-280	Sandy gravel: 75% gravel, subangular to subrounded, moderate sorting, quartz/feldspar/mafics, up to ½-in.; 25% sand, medium, moderate sorting, well rounded to subrounded, mostly quartz with some mafics & feldspars; moderate reaction to acid.
280-300	<u>Gravelly sand</u> : 85% sand, medium to coarse, well sorted, subrounded, mostly quartz with feldspar and some mafics; 15% gravel, subangular, moderate sorting, quartz/mafics/feldspars; mild to moderate reaction with HCl.
300-310	Sandy clay: 70% clay, high plasticity, reddish brown; 30% sand, medium to fine, moderate sorting, subrounded, medium grains, mostly quartz, with feldspar and some mafics; moderate reaction with HCl.
310-340	Sandy clay: 70% clay, high plasticity, tan; 30% sand, fine grained, well sorted, mostly quartz with mafics; moderation reaction with HCl.

Contractor: Hydro Resources

Drilling bit: 17.5-in. milltooth

Rig: 10031

		EN THE TREETING	Market Commence
BORE	HOLE SPUD DA	TE: 8/24/2023	<u> Millimonau</u>
CLIEN	T: <u>Huitt-Zollars</u>	98%, IEC 00	
PROJE	CT: Well 9R	2024 JAN 22	AM 8: 23
LOCAT	ΓΙΟΝ: <u>Rio Ranch</u>	0	
BORE	HOLE NAME: W	ell 9R	<u>,, , , , , , , , , , , , , , , , , , ,</u>
GEOLO	OGIST: <u>AKM/ZB</u>	C/FGS	
Notes: cuttir	ngs not washed, re	ecorded wet	
			- -
		-	

Drilling me	ethod: Reverse Mud Rotary
Depth, ft bgl	Description B 2 2 0
340-350	Sandy clay: 60% clay, tan with occasional red and black streaks, high plasticity; 40% sand, tan with minor black grains, subrounded, fine, moderate to well sorting, mainly quartz; mild reaction to HCl.
350-360	Clayey sand: 55% sand, predominately tan, minor white/black grains, fine to medium, subrounded to rounded, moderately sorted, mostly quartz, minor mafics; 45% clay, tan, high plasticity; mild reaction to HCl.
360-370	Sandy clay: 95% clay, brown with occasional reddish streaks, medium plasticity with many large, dense, low plasticity chunks; 5% sand, very fine to coarse, poorly sorted, tan or black, some mafics; mild reaction to HCl.
370-380	<u>Clayey sand</u> : 70% sand, predominantly tan, minor red/black, fine-medium grained, moderately well sorted, subrounded to rounded, mainly quartz, minor feldspar and mafics; 30% clay, high plasticity, well hydrated, tan with red streaks; mild reaction to acid.
380-390	<u>Clayey sand</u> : 60% sand, mostly tan, moderate red/white/black, fine to coarse grained, poor to moderate sorting, subrounded to rounded, mostly quartz with feldspar and mafics; 40% clay, tan, high plasticity; moderate reaction to HCl.
390-400	Sandy clay: 60% clay, reddish brown, high plasticity; 40% sand, tan and red, with large black grains, poor to moderately sorted, subrounded to rounded, quartz and feldspar, minor mafics; strong reaction with HCl.
400-410	Sandy clay: 65% clay, reddish brown, with some gray lenses, high plasticity; 35% sand, fine grained with few larger pieces, tan and red, moderately sorted, quartz, feldspar and minor mafics; strong reaction with HCL.
420-440	Gravelly clay: 90% clay, high plasticity, tan; 10% gravel, moderately sorted, subrounded, up to ¼-in., tan; strong reaction with HCl.
440-510	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine grained, well sorted, tan; strong reaction with HCl.
510-520	Sandy clay: 75% clay, high plasticity, tan; 30% sand-fine grained, well sorted, tan; strong reaction with HCl.
520-530	Sandy clay: 55% clay, high plasticity, tan; 45% sand, fine to coarse grained, poor sorting, subangular to angular, mostly quartz with mafics and feldspars; strong reaction with HCl.
530-540	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine grained, well sorted, tan; reaction with HCl.
540-550	Gravelly sand: 80% sand, coarse grained, moderately sorted, subrounded to subangular, mostly quartz with mafics and feldspar; 20% gravel, subangular, moderate sorting, up to ¼-in., black/dark green/red grains; reaction with HCl.

1	CLIENT: Huitt-Zollers 22 AU 8: 23
	PROJECT: Well 9R
	LOCATION: Rio Rancho
	BOREHOLE NAME: Well 9R
	GEOLOGIST: AKM/ZBC/FGS
	Notes: cuttings not washed, recorded wet

Contractor: Hydro Resources

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Depth,	
ft bgl	Description 2 7 7
550-560	Gravelly clayey sand: 55% sand, medium to coarse, moderate sorting, subrounded to subangular, quartz, feldspar and mafic; 40% clay, high plasticity, tan; 5% gravel, moderate sorting, sub angular, black/red/brown; reaction with HCl.
560-580	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine to medium grained, moderately sorted, subrounded, quartz with mafics and feldspar; reaction with HCl.
580-590	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine grained, well sorted; reaction with HCl.
590-600	Sandy clay: 60% clay, tan, high plasticity; 40% sand, fine to coarse grained, poorly sorted, subangular to subrounded, mostly tan some red/white/black grains, quartz, feldspar, and mafics; mild reaction to HCl.
600-610	Sandy clay: 60% clay, tan, high plasticity; 40% sand, fine to medium, subrounded, moderately sorted, mostly tan, minor red/white/black, mostly quartz, minor feldspar and mafics; mild reaction to HCl.
610-620	<u>Clayey sand</u> : 70% sand, coarse to very coarse, poorly sorted, subrounded to subangular, mostly tan, minor white/black/red grains, quartz with feldspars and mafics; 30% clay, tan to gray, high plasticity; mild reaction to HCl.
620-630	Sandy clay: 60% clay, tan, high plasticity; 40% sand, fine to medium, subrounded, moderately sorted, mostly tan, minor white/black, mainly quartz, some mafics; moderate reaction to HCl.
630-640	Gravelly clayey sand: 80% sand, fine to very coarse, subangular to subrounded, poorly sorted, tan, red, black grains, varying compositions; 15% clay, medium to low plasticity; 5% sand, varying sized lenses, brown/red, tan, minor gravel, ~1/4-in. varying color; slow reaction with HCl.
640-650	Clay: low plasticity, dense, tan; reaction with HCl.
650-680	<u>Clayey sand</u> : 70% sand, fine grained, well sorted, tan; 30% clay, high plasticity, tan; reaction with HCl.
680-690	Clay: low plasticity, dense, tan; reaction with HCl.
690-720	<u>Clayey sand</u> : 70% sand, fine grained, well sorted, tan; 30% clay, high plasticity, tan; low reaction with HCl.
720-750	<u>Clayey sand</u> : 70% sand, fine to medium grained, moderately sorted, subrounded, quartz with mafics and feldspars; 30% clay, high plasticity, tan; low reaction with HCl.
750-760	Gravelly clayey sand: 65% sand, fine to medium grained, moderately sorted, subrounded to subangular, quartz with mafics and feldspars; 30% clay, high plasticity, tan; 5% gravel, moderately sorted, sub angular, black/red grains; no reaction with HCl for gravel, high reaction with HCl for clay.

BOREHOLE SPUD DA	
CLIENT: Huitt-Zollars	SHIPS E. KENNEXIET
PROJECT: Well 9R	2024 JAN 22 AM 8: 23
LOCATION: Rio Rancl	ho
BOREHOLE NAME: Y	Vell 9R
GEOLOGIST: AKM/ZI	BC/FGS

Contractor: Hydro Resources

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Depth,	Description
ft bgl	· · · · · · · · · · · · · · · · · · ·
760-770	Clayey sand: 70% sand, fine grained, well sorted; 30% clay, high plasticity, tan; strong reaction with HCl.
770-780	Clayey sand: 70% sand, fine grained, well sorted; 30% clay, high plasticity, tan; weak reaction with HCl.
780-790	Clayey sand: 75% sand, fine to medium grained, well sorted, rounded to subrounded, mostly rounded quartz with mafics and red/green grains; 25% clay, high plasticity, tan; moderate reaction with HCl.
790-800	Clayey sand: 65% sand, fine grained, well sorted, varying colors white/black/red; 35% clay, high plasticity, tan; strong reaction with HCl.
800-810	Sandy clay: 50% cla,y tan/red/white, high plasticity; 50% sand, fine grained, round, well sorted, mostly tan, some black, mainly quartz and some mafics; mild reaction to HCl
810-820	Sandy clay: 80% clay, brown, medium-low plasticity; 20% sand, generally very fine w/occasional larger (medium) black grains, mostly quartz and some mafics; mild reaction to HCl
820-830	Sandy clay: 50% clay, overall tan, high plasticity w/ dense brown low plasticity lenses; 50% sand, fine to medium, subangular to subrounded, moderately sorted, mostly tan w/ some white/red/black, mostly quartz, some feldspar and mafics; reaction to HCl
830-840	Sandy clay: 50% clay, tan w/minor orange, high plasticity; 50% sand, fine w/lesser medium-coarse, moderately sorted, subrounded to subangular, mostly tan, some red/black, mainly quartz, some feldspar and mafics; very weak reaction to HCl
840-850	Gravelly sandy clay: 50% clay, brownish tan, high plasticity w/low plasticity dense lenses; 45% sand, fine to very fine, moderately sorted, mainly quartz, minor mafics; 5% gravel gray, subangular, <1/2", 5%; strong reaction to HCl for gravel and moderate overall
850-860	Sandy clay: 50% clay, tan, high plasticity overall w/large dense lenses; 50% sand, fine-medium, subrounded to subangular, moderately sorted, mostly tan w/some white/red/black, quartz and calcite, feldspar and mafics; strong reaction to HCl
860-890	Clayey sand: 70% sand, mainly fine-medium grained w/occasional coarse, subrounded to subangular, moderately sorted, tan w/some red/black, mainly quartz, some feldspar and mafics; 30% clay gray; mild reaction to HCl
890-990	Clavey sand: 60% sand, fine, well sorted, tan; 40% clay, high plasticity, tan; mild reaction to HCl
990-1000	Clayey sand: 75% sand, fine, well sorted, tan; 25% clay, high plasticity, tan; moderate reaction to HCl
1000-1010	Clavey sand: 55% sand, fine, well sorted, tan; 45% clay, high plasticity, tan; high reaction to HCl

BOREHOLE SPUD DA	ATE: 8/24/2023
CLIENT: Huitt-Zollars	
PROJECT: Well 9R	2024 JAH 22 AH 6: 23
LOCATION: Rio Ranc	ho
BOREHOLE NAME: Y	Well 9R
GEOLOGIST: AKM/Z	BC/FGS
Notes: cuttings not wash	ed, recorded wet

Contractor: Hydro Resources	Notes: cuttings not washed, recorded wet
Rig: <u>10031</u>	
Drilling bit: 17.5-in. milltooth	2
Drilling method: Reverse Mud Rotary	7 6 20

	iod. Acverse Midd Rotary
Depth, ft bgl	Description Description
1010-1020	Clayey silt: 60% silt; mostly tan, some white; 40% clay, moderate plasticity, tan; moderate reaction to HCl
1020-1030	Silty clay: 70% clay, dense, yellow-tan; 30% silt, yellow-tan; medium reaction to HCl
1030-1040	Silty clay: 90% clay, dense, high plasticity, yellow-tan; 10% silt, yellow-tan; slight rxn to HCl
1040-1050	Silty clay: 80% clay, dense, high plasticity, yellow-tan; 20% silt – yellow-tan w/some white grains; very slight reaction to HCl
1050-1060	Sand silty clay: 80% clay, very dense, moderate plasticity, yellow-tan; 10% silt, yellow-tan; 10% sand, very fine, white/translucent, quartz; slight reaction to HCl
1060-1070	Silty sandy clay: 70% clay, high plasticity, moderately stiff, yellow-tan; 20% sand, very fine, subangular to subrounded, well sorted, mostly quartz, white/translucent; 10% silt, yellow-tan
1070-1080	Clayey silty sand: 50% sand, fine grained, subangular to subrounded, well sorted, mostly quartz and feldspars, tan; 30% silt, tan; 20% clay, moderate plasticity, tan w/some white lenses
1080-1090	Clay: clay light red, dense, high plasticity. Some fine sand grains observed but < 10%
1090-1100	Clay: dense red, tan, high plasticity, moderate reaction to HCl
1100-1110	Clay: dense, yellow tan, high plasticity, moderate reaction to HCl
1110-1120	Silty clay: yellow tan, high plasticity, moderate reaction to HCl
1120-1130	Clay: dense, yellow tan, high plasticity, moderate reaction to HCl
1130-1140	Silty clay: yellowish tan, high plasticity, moderate reaction to HCl
1140-1150	Clayey, silty sand: 40% sand, fine, tan, some white; 30% silt, tan; 30% clay, tan, high plasticity, 30%; slight reaction to HCl
1150-1160	Sandy clay: 60% clay, tan, dense, high plasticity; 40% sand, fine, unconsolidated to moderate consolidation, tan, some white, moderate reaction to HCl
1160-1170	Clay: yellow tan, dense, high plasticity, slight reaction to HCl
1170-1180	Clay: tan, dense, high plasticity; minor silt; slight reaction to HCl
1180-1190	Clay: tan, dense, high plasticity; strong reaction to HCl
1190-1200	Silty clay: 60% clay, grayish brown, high plasticity; 40% silt, grayish brown to white, moderate consolidation; strong reaction to HCl
1200-1210	Clay: dense, tan to reddish brown, high plasticity; moderate reaction to HCl
1210-1220	Silty clay: 60% clay, tan, medium plasticity; 40% silt, moderate consolidation, reddish brown, tan; moderate reaction to HCl
1220-1230	Clayey silty sand: 50% sand, light brown to tan, very fine to fine grained, subangular to subrounded, moderately sorted, quartz, feldspars, few dark lithics; 30% silt, moderately consolidated in lenses, light brown to tan; 20% clay, tan, soft, moderate plasticity

BOREHOLE SPUD DATE: 8/24/2023		
CLIENT: Huitt-Zollars		
PROJECT: Well 9R	2024 JAN 22 AH 8: 23	
LOCATION: Rio Rancho		
BOREHOLE NAME:	Well 9R	
GEOLOGIST: AKM/Z	ZBC/FGS	

Contractor: Hydro Resources	Notes: cuttings not washed, recorded wet
Rig: 10031	
Drilling bit: 17.5-in. milltooth	

Drilling met	hod: Reverse Mud Rotary
Depth, ft bgl	Description
1230-1240	Clayey silty sand: 70% sand, light brown to tan, very fine to fine grained, subangular to subrounded, moderately sorted, quartz, feldspars, few dark lithics; 20% silt, tan, moderate consolidation; 10% clay, tan, soft; moderate reaction to HCl
1240-1250	Silty sand: 80% sand, tan, very fine to fine grained, subangular to subrounded, moderately sorted, quartz, feldspars, few dark lithics, moderately consolidated; 20% silt, tan, moderately consolidated; moderate reaction to HCl
1250-1260	Silty clay: clay, light brown, moderate density, high plasticity; reacts moderately to HCl
1260-1270	Clayey sandy silt: silt, light brown to tan; <10 sand, quartz, feldspar, medium; strong reaction with HCl;
1270-1280	Silty sand: 60 % sand, medium to coarse grained, quartz, feldspar, lithics, some subrounded, poorly sorted; 40% silt; slight reaction to HCL
1280-1290	Sandy silt: 60 % silt, light brown to tan, not very dense, moderate reaction to HCl; sand 40%, medium to coarse grained, subangular, quartz, feldspar, lithics
1290-1300	Silty sand: 60% sand, subrounded to rounded, fine to medium grained, quartz, feldspar, black lithics; 40% silt, high plasticity, black streaks, mafics of sand slight reaction to HCl,
1300-1310	Silty sand: 60% sand, medium to coarse grained, , quartz, feldspar, lithics; 40% silt, light brown, mafics to sand, medium plasticity, black streaks; reaction to HCl
1310-1320	Silty clay: 70% clay, dense, high plasticity, tan; 30% silt, tan
1320-1330	Silty clay: 75% clay, high plasticity, tan; 25% silt, tan; reacts to HCl
1330-1340	Silty clay: 80% clay, dense, high plasticity, tan; 20% silt; reacts to HCl
1340-1350	Silty clay: 50% clay, high plasticity, tan, dense; 50% silt, tan; reacts to HCl
1350-1360	Sandy clay: 70% clay, high plasticity, tan; 30% silt, tan; reacts to HCl
1360-1370	Silty clay: 70% clay, high plasticity, tan; 30% silt, tan; reacts to HCl
1370-1380	Sandy clay: 80% clay, high plasticity, dense, tan; 20% sand, medium to fine, subangular, well sorted, tan; reacts to HCl
1380-1390	Sandy clay: 75% clay, high plasticity, dense, tan; 25% sand, medium to fine, well sorted, tan; reacts to HCl
1390-1400	Silty clay: 80% clay, high plasticity, dense, tan; 20% silt, tan; reacts to HCl
1400-1410	Silty clay: 90% clay, high plasticity, dense, tan; 10% silt, tan; reacts to HCl
1410-1420	Sandy clay: 65% clay, high plasticity, dense, tan; 35% sand, medium to fine, well sorted, angular to subrounded; reacts to HCl
1420-1430	Silty clay: 90% clay, high plasticity, tan; 10% silt, tan; reacts to HCl
1430-1440	Sandy clay: 70% clay, medium plasticity, tan; 30% sand, angular to subrounded, coarse medium to fine, tan; reacts to HCl

	TO A T SARIA FE. NEW YEARDS	
	BOREHOLE SPUD DATE: 8/24/2023	
	CLIENT: Huitt-Zollars	
	PROJECT: Well 9R	
	LOCATION: Rio Rancho	-
	BOREHOLE NAME: Well 9R	
	GEOLOGIST: AKM/ZBC/FGS	
Contractor:]	Hydro Resources Notes: cuttings not washed, recorded wet	
Rig: 10031		
Drilling bit:	17.5-in. milltooth	
Drilling met	hod: Reverse Mud	
Depth,	Description	
ft bgl 1440-1450	City of an 750/ of an an in the control in the cont	
1450-1460	Silty clay: 75% clay, medium plasticity, tan; 25% silt, tan; reacts to HCl Silty clay: 70% clay, medium plasticity, tan; 30% silt, tan; reacts to HCl	
1460-1470	Sandy clay: 60% clay, medium plasticity, tan; 40% sand, coarse to fine, angular to sübangular, well sorted, tan; reacts to HCl	
1470-1500	Silty sand: 80% sand, fine to medium, moderately sorted, subangular, tan; 20% silt, tan; mild rx to HCl	in
1500-1560	Silter and POO/ and mading to	
1560-1570	Silty sand: 60% sand, fine, tan; 40% silt, tan; mild reaction to HCl	\dashv
1570-1610	Sand: medium to coarse, moderately sorted subangular to subrounded, tan, mostly quartz w/ some feldspars and mafics; minor silt, minor reaction to HCl	\neg
1610-1640	Silty sand: 80% sand, coarse to medium, well sorted, angular to subangular, tan; 20% silt, tan; reacts to HCl	一
1640-1670	Sandy clay: 75% clay, medium plasticity, tan; 25% sand, angular to subangular, well sorted, tan reacts to HCl	ı;
1670-1750	Silty sand: 75% sand, fine to medium, subangular to subrounded, tan; 25% silt, tan; mild reaction to HCl	on n
1750-1760	Clay: moderate plasticity, dense, tan	\dashv
1760-1770	Clayey sand: 60% sand, mostly tan, minor white/black, fine grained, moderately well sorted, subrounded to subangular, mostly quartz, minor mafics, feldspar; 40% clay, tan, high plasticity; mid reaction to HCl	
1770-1780	Clayey sand: 55% sand, mostly tan, minor white/black, fine to medium grained, moderately sorted, subrounded to subangular, mostly quartz, minor feldspar; 45% clay, high plasticity, tan; no reaction to HCl	\dashv
1780-1800	Sandy clay: 50% clay, tan, high plasticity;50% sand, fine to medium grained, moderately sorted subrounded to subangular	i,
1800-1810	Clayey sand: 60% sand, fine to medium grained, moderately sorted, subrounded to subangular, mostly quartz: 40% clay tan medium plasticity	

Clayey sand: 60% sand, fine to coarse, moderately sorted, subrounded to subangular, mostly

Sand: medium grained, moderately sorted, subrounded to subangular, mostly quartz w/feldspar,

quartz, minor feldspar; 40% clay, tan, low plasticity

chert; minor clay

1810-1830

1830-1840

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS

Contractor: Hydro Resources	Notes: cuttings not washed, recorded wet
Rig: 10031	
Drilling bit: 17.5-in. milltooth	
Drilling method: Reverse Mud	

Depth, ft bgl	Description	
1840-1850	Sand: medium grained, moderately sorted, subrounded to subangular, mostly quartz w/feldspar and chert	
1850-1870	Sand: medium grained, moderately sorted, subrounded to subangular, mostly quartz w/feldspar and chert	
1870-1890	Sand: fine to medium grained, moderately sorted, subrounded to subangular, mixed lithology; minor clay	
1890-1900	Clay: tan/brown, high plasticity, really slowed drill down; no reaction to HCl	
1900-1910	Silty sand: 70% sand, medium to coarse grained, subrounded, moderately sorted, quartz, feldspar, lithics; 30% silt; slight reaction to HCl	
1910-1920	Silty cond, 900/ good modium to good middle to the silver	
1920-1930	Clayey silty sand: 60% sand, medium to fine grained, subangular to rounded, quartz, feldspar, lithics; 20% silt; 20% clay, low plasticity; strong reaction to HCl	
1930-1950	Clayey silty sand: 70% sand, coarse to fine grained, poorly sorted, subangular to rounded, quartz, feldspar, lithics; 20% silt; 10% clay, plastic; slight reaction to HCl	
1950-1960	Silty sand: 80% sand, medium to coarse grained, angular to subrounded, mainly quartz, some feldspar and lithics; 20% silt; very strong reaction to HCl	
1960-2000	Silty sand: 80% sand, medium to fine grained, subangular to rounded, quartz, feldspar, lithics; 20% silt; reaction to HCl	
2000-2005 TD	Silty sand: 80% sand coarse to fine grained, subangular to rounded quartz, feldspar, lithics, small rxn to HCl; 20% silt; slight reaction to HCl	

DRILL RIG SUPERVISOR²² M 8:3 REGISTRATION CARD

Below is your drill rig supervisor identification card (ID). Please carry the card with you when you are managing the on-site operations at a drill site. When providing onsite supervision of well drilling activities within the state of New Mexico you must have your ID card available for inspection upon request.

A person registered by the office of the state engineer as a drill rig supervisor may provide onsite supervision of well drilling activities. A drill rig supervisor shall work under the direction of a licensed well driller. The licensed well driller is responsible for the actions of each drill rig supervisor they direct to provide onsite supervision of well drilling activities.

To maintain your registration as a drill rig supervisor, you must complete a minimum of eight continuing education hours approved by the state engineer during each two year registration period. At least two hours of the continuing education shall be specific to regulatory requirements regarding well drilling in the state of New Mexico.

Note — Card folds over butterfly style with clean adhesive to create an 11 mil card. Carry this card with you when you are managing the on-site operations or otherwise working at a drill site. The card may be laminated for additional durability.

The person listed on the front of this card is registered as a drill rig supervisor by the Office of the State Engineer and may manage the on-site operations of the drilling site in the well driller's absence. The drill rig supervisor is authorized to perform the drilling activities authorized to the licensed driller.

For additional information contact the Office of the State Engineer at (505) 827-6120 in Santa Fe, or www.ose.state.nrm.us

NEW MEXICO OFFICE OF THE STATE ENGINEER

DRILL RIG SUPERVISOR REGISTRATION

Name: TYLER CURTIS
Expiration: Oct 31, 2025

The person listed above is authorized to work on behalf of: Company: <u>HYDRO RESOURCES-ROCKY</u>

MOUNTAIN INC.

License No: <u>WD-1726</u>

ADDITIONAL INFORMATION ON BACK

WELL DRILLER LICENSE 8: 31

Below is your well driller identification card (ID). Please carry your ID when you are managing drilling activities at a drill site. You are required to have your identification card available while conducting well drilling activities for inspection upon request.

You are responsible for the actions of any and all drill rig supervisor that you direct to provide onsite supervision of well drilling activities. Their ID card expiration date coincides with the well driller's license expiration.

To maintain your license as a well driller, you and your drill rig supervisors must complete a minimum of eight continuing education hours approved by the state engineer during each two year license period. At least two hours of the continuing education shall be specific to regulatory requirements regarding well drilling in the state of New Mexico. To view a list of approved courses, please visit www.ose.state.nm.us

For each well drilled, the well driller shall complete a well record and submit it to the Office of the State Engineer within thirty days of well completion.

Note – Card folds over butterfly style with clean adhesive to create an 11 mil card. Carry this card with you when you are conducting well drilling activities within New Mexico. The card may be laminated for additional durability.

The person listed on the front of this card is licensed to construct the well by the following methods or (if NONE) can perform following all other well drilling activities: MUD ROTARY DRILLING, AIR ROTARY DRILLING, REVERSE CIRCULATION DRILLING

For additional information contact the Office of the State Engineer at (505) 827-6120 in Santa Fe, or www.ose.state.nm.us

NEW MEXICO OFFICE OF THE STATE ENGINEER

WELL DRILLER LICENSE

Name: JIM HALE

Expiration: Oct 31, 2025

Company: HYDRO RESOURCES- ROCKY

MOUNTAIN INC.

License No: **WD-1726**

ADDITIONAL INFORMATION ON BACK

Appendix B.

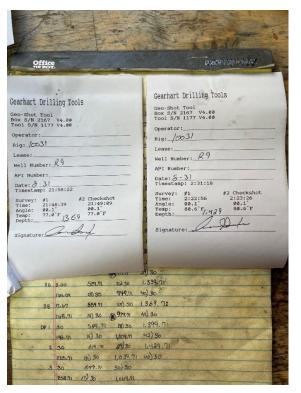
Site photographs, City of Rio Rancho Well 9R

Filling storage tank.

Auger for conductor casing.


Running conductor casing.

Drill bit.

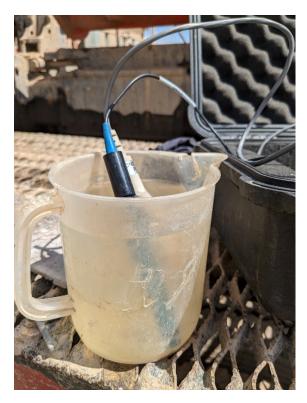

Drill rig at night.

Caliper logging tool.

Cuttings on shale shaker.

Example borehole deviation.

Running pipe for zone development.


Tripping pipe out.

Bentonite pellets for zone sampling.

Gravel packing for zone sampling.

Monitoring water-quality during zone sampling.

Reaming assembly.

Water sample kits for lab analysis.

Blank production casing.

Running in screen.

Gravel packing at night.

Running in casing and sounding tube.

Running in the dummy tool.

Swab tool in hole.

Total sand after 48 hours of pumping.

Swab tool with scale.

Appendix C.

Descriptions of cuttings samples, City of Rio Rancho Well 9R

BOREHOLE SPUD DATE: J	July 19, 2023	3

CLIENT: Huitt-Zollars

PROJECT: Well 9R

LOCATION: Rio Rancho

BOREHOLE NAME: Well 9R

GEOLOGIST: RLP

Contractor: <u>Hydro Resources</u>

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Notes: cuttings not washed, recorded wet	
except for upper 80 ft which was de	rilled with
auger methods with some polymer	and water

Depth, ft bgl	Description
0-10	Sandy silt: sand, fine; caliche; minor gravel, sub rounded up to 2"
10-20	Sandy silt: silt tan; sand, very fine grained
20-30	Gravel sandy silt: 85% silt, tan; 10% sand, fine-grained, well sorted, tan; 5% gravel ~ ½ to ½-in., angular; reacts to HCl
30-40	Silty sand: 80% sand, fine grained, well sorted, tan; 20% silt; moist from water-injection; reacts to HCl.
40-50	Gravel silty sandy: 75% sand fine grained, well sorted, tan; 22% silt, 3% gravel ~1/4 to ½-in., subangular; reacts to HCl.
50-60	Sandy silty: 75% sand, fine grained, well sorted, tan; 25% silt; reacts to HCl
60-70	Sandy silt: 70% silt, tan; 30% sand, fine grained, well sorted; reacts to HCl, moist from water added during drilling
70-80	Sandy silt: 70% silt, tan; 30% sand, fine grained, well sorted; reacts to HCl, moist from water added during drilling
80-90	Sandy gravel: 85% gravel, up to ¼ inch, subrounded to subangular, poorly sorted, varying compositions, varying color (red, black, white, tan); 15% sand, fine-med. grained, subrounded; mild reaction to HCl
90-100	Sandy gravel: 85% gravel, up to ¼ inch, subrounded to subangular, poorly sorted, varying compositions, varying color (red, black, white, tan); 15% sand, fine-med. grained, subrounded; mild reaction to HCl
100-110	Clayey sand: 60% sand, fine grained, tan; 40% clay, high plasticity, tan
110-120	Gravelly sand: 80% sand, coarse, well sorted, subangular to subrounded, mostly quartz, with some mafics/feldspars, dark brown; 20% gravel, moderately sorted, subangular, mostly quartz and feldspar, up to ¼-in., white/opaque grains
120-140	Clayey sand: 60% sand, fine-grained, tan; 40% clay, high plasticity

	BOREHOLE SPUD DATE: 8/24/2023
	CLIENT: Huitt-Zollars
	PROJECT: Well 9R
	LOCATION: Rio Rancho
	BOREHOLE NAME: Well 9R
	GEOLOGIST: AKM/ZBC/FGS
N	otes: cuttings not washed, recorded wet

Contractor: Hydro Resources

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Depth, ft bgl	Description
140-190	Gravelly sand: 80% sand, coarse, subrounded to well rounded, moderately sorted, mostly quartz with mafics and feldspars, up to ¼-in.; 20% gravel, moderately sorted, subrounded, brown to reddish brown, black, gray
190-200	Clayey sand: 60% sand, coarse grained, subangular, moderately sorted, mostly quartz with mafics & feldspars; 40% clay, high plasticity, tan; moderate reaction to HCl.
200-220	Gravelly sand: 80% sand, coarse grained, subrounded to rounded, moderately sorted, mostly quartz with mafics & feldspar; 20% gravel, moderately sorted, subrounded to subangular, tan, black, white, red grains; weak reaction to acid.
220-240	Gravelly sandy clay: 60% clay, high plasticity, brown/tan; 35% sand, subrounded to well rounded, medium to coarse, moderately sorted, mostly quartz with mafics and feldspars; 5% gravel, subangular, moderately sorted, brown, red, black grains; mild reaction to acid.
240-250	Gravelly sand: 80% sand, coarse moderately sorted, sub to well rounded, mostly quartz with some mafics and feldspars, up to ¼-in.; 20% gravel, subangular to subrounded, moderate sorting, black/red/brown mafics and feldspars present; weak reaction to acid.
250-260	Gravelly sandy clay: 55% clay, high plasticity, tan; 40% sand, medium, moderately sorted, well rounded, mostly quartz with some mafics and feldspars; 5% gravel, subangular to subrounded, moderate sorting, black/red/brown; moderate reaction to acid.
260-270	Gravelly sand: 95% sand, coarse, well sorted, well rounded, mostly quartz with some mafics & feldspars; 5% gravel, subangular, moderate sorting, black/red/brown, mafics and feldspar; moderate reaction to HCl.
270-280	Sandy gravel: 75% gravel, subangular to subrounded, moderate sorting, quartz/feldspar/mafics, up to ½-in.; 25% sand, medium, moderate sorting, well rounded to subrounded, mostly quartz with some mafics & feldspars; moderate reaction to acid.
280-300	Gravelly sand: 85% sand, medium to coarse, well sorted, subrounded, mostly quartz with feldspar and some mafics; 15% gravel, subangular, moderate sorting, quartz/mafics/feldspars; mild to moderate reaction with HCl.
300-310	Sandy clay: 70% clay, high plasticity, reddish brown; 30% sand, medium to fine, moderate sorting, subrounded, medium grains, mostly quartz, with feldspar and some mafics; moderate reaction with HCl.
310-340	Sandy clay: 70% clay, high plasticity, tan; 30% sand, fine grained, well sorted, mostly quartz with mafics; moderation reaction with HCl.

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS
s: cuttings not washed recorded wet

	GEOEGIST: MANIFEBERT GS
Contractor: Hydro Resources	Notes: cuttings not washed, recorded wet
Rig: 10031	_
Drilling bit: 17.5-in. milltooth	_
Drilling method: Reverse Mud Rotary	

Depth, ft bgl	Description
340-350	Sandy clay: 60% clay, tan with occasional red and black streaks, high plasticity; 40% sand, tan with minor black grains, subrounded, fine, moderate to well sorting, mainly quartz; mild reaction to HCl.
350-360	<u>Clayey sand</u> : 55% sand, predominately tan, minor white/black grains, fine to medium, subrounded to rounded, moderately sorted, mostly quartz, minor mafics; 45% clay, tan, high plasticity; mild reaction to HCl.
360-370	Sandy clay: 95% clay, brown with occasional reddish streaks, medium plasticity with many large, dense, low plasticity chunks; 5% sand, very fine to coarse, poorly sorted, tan or black, some mafics; mild reaction to HCl.
370-380	Clayey sand: 70% sand, predominantly tan, minor red/black, fine-medium grained, moderately well sorted, subrounded to rounded, mainly quartz, minor feldspar and mafics; 30% clay, high plasticity, well hydrated, tan with red streaks; mild reaction to acid.
380-390	<u>Clayey sand</u> : 60% sand, mostly tan, moderate red/white/black, fine to coarse grained, poor to moderate sorting, subrounded to rounded, mostly quartz with feldspar and mafics; 40% clay, tan, high plasticity; moderate reaction to HCl.
390-400	Sandy clay: 60% clay, reddish brown, high plasticity; 40% sand, tan and red, with large black grains, poor to moderately sorted, subrounded to rounded, quartz and feldspar, minor mafics; strong reaction with HCl.
400-410	Sandy clay: 65% clay, reddish brown, with some gray lenses, high plasticity; 35% sand, fine grained with few larger pieces, tan and red, moderately sorted, quartz, feldspar and minor mafics; strong reaction with HCL.
420-440	Gravelly clay: 90% clay, high plasticity, tan; 10% gravel, moderately sorted, subrounded, up to ¼-in., tan; strong reaction with HCl.
440-510	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine grained, well sorted, tan; strong reaction with HCl.
510-520	Sandy clay: 75% clay, high plasticity, tan; 30% sand-fine grained, well sorted, tan; strong reaction with HCl.
520-530	Sandy clay: 55% clay, high plasticity, tan; 45% sand, fine to coarse grained, poor sorting, subangular to angular, mostly quartz with mafics and feldspars; strong reaction with HCl.
530-540	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine grained, well sorted, tan; reaction with HCl.
540-550	Gravelly sand: 80% sand, coarse grained, moderately sorted, subrounded to subangular, mostly quartz with mafics and feldspar; 20% gravel, subangular, moderate sorting, up to ¼-in., black/dark green/red grains; reaction with HCl.

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS
Notes: cuttings not washed, recorded wet

Contractor: <u>Hydro Resources</u>	-
Rig: 10031	
Drilling bit: 17.5-in. milltooth	
Drilling method: Reverse Mud Rotary	

Depth, ft bgl	Description
550-560	Gravelly clayey sand: 55% sand, medium to coarse, moderate sorting, subrounded to subangular, quartz, feldspar and mafic; 40% clay, high plasticity, tan; 5% gravel, moderate sorting, sub angular, black/red/brown; reaction with HCl.
560-580	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine to medium grained, moderately sorted, subrounded, quartz with mafics and feldspar; reaction with HCl.
580-590	Sandy clay: 75% clay, high plasticity, tan; 25% sand, fine grained, well sorted; reaction with HCl.
590-600	Sandy clay: 60% clay, tan, high plasticity; 40% sand, fine to coarse grained, poorly sorted, subangular to subrounded, mostly tan some red/white/black grains, quartz, feldspar, and mafics; mild reaction to HCl.
600-610	Sandy clay: 60% clay, tan, high plasticity; 40% sand, fine to medium, subrounded, moderately sorted, mostly tan, minor red/white/black, mostly quartz, minor feldspar and mafics; mild reaction to HCl.
610-620	<u>Clayey sand</u> : 70% sand, coarse to very coarse, poorly sorted, subrounded to subangular, mostly tan, minor white/black/red grains, quartz with feldspars and mafics; 30% clay, tan to gray, high plasticity; mild reaction to HCl.
620-630	Sandy clay: 60% clay, tan, high plasticity; 40% sand, fine to medium, subrounded, moderately sorted, mostly tan, minor white/black, mainly quartz, some mafics; moderate reaction to HCl.
630-640	Gravelly clayey sand: 80% sand, fine to very coarse, subangular to subrounded, poorly sorted, tan, red, black grains, varying compositions; 15% clay, medium to low plasticity; 5% sand, varying sized lenses, brown/red, tan, minor gravel, ~1/4-in. varying color; slow reaction with HCl.
640-650	Clay: low plasticity, dense, tan; reaction with HCl.
650-680	Clayey sand: 70% sand, fine grained, well sorted, tan; 30% clay, high plasticity, tan; reaction with HCl.
680-690	Clay: low plasticity, dense, tan; reaction with HCl.
690-720	<u>Clayey sand</u> : 70% sand, fine grained, well sorted, tan; 30% clay, high plasticity, tan; low reaction with HCl.
720-750	<u>Clayey sand</u> : 70% sand, fine to medium grained, moderately sorted, subrounded, quartz with mafics and feldspars; 30% clay, high plasticity, tan; low reaction with HCl.
750-760	Gravelly clayey sand: 65% sand, fine to medium grained, moderately sorted, subrounded to subangular, quartz with mafics and feldspars; 30% clay, high plasticity, tan; 5% gravel, moderately sorted, sub angular, black/red grains; no reaction with HCl for gravel, high reaction with HCl for clay.

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS
Nickey with a second of second design
Notes: cuttings not washed, recorded wet

Contractor: Hydro Resources Notes: cutting
Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Depth, ft bgl	Description
760-770	<u>Clayey sand</u> : 70% sand, fine grained, well sorted; 30% clay, high plasticity, tan; strong reaction with HCl.
770-780	<u>Clayey sand</u> : 70% sand, fine grained, well sorted; 30% clay, high plasticity, tan; weak reaction with HCl.
780-790	<u>Clayey sand</u> : 75% sand, fine to medium grained, well sorted, rounded to subrounded, mostly rounded quartz with mafics and red/green grains; 25% clay, high plasticity, tan; moderate reaction with HCl.
790-800	<u>Clayey sand</u> : 65% sand, fine grained, well sorted, varying colors white/black/red; 35% clay, high plasticity, tan; strong reaction with HCl.
800-810	Sandy clay: 50% cla,y tan/red/white, high plasticity; 50% sand, fine grained, round, well sorted, mostly tan, some black, mainly quartz and some mafics; mild reaction to HCl
810-820	Sandy clay: 80% clay, brown, medium-low plasticity; 20% sand, generally very fine w/ occasional larger (medium) black grains, mostly quartz and some mafics; mild reaction to HCl
820-830	Sandy clay: 50% clay, overall tan, high plasticity w/ dense brown low plasticity lenses; 50% sand, fine to medium, subangular to subrounded, moderately sorted, mostly tan w/ some white/red/black, mostly quartz, some feldspar and mafics; reaction to HCl
830-840	Sandy clay: 50% clay, tan w/minor orange, high plasticity; 50% sand, fine w/lesser medium-coarse, moderately sorted, subrounded to subangular, mostly tan, some red/black, mainly quartz, some feldspar and mafics; very weak reaction to HCl
840-850	Gravelly sandy clay: 50% clay, brownish tan, high plasticity w/low plasticity dense lenses; 45% sand, fine to very fine, moderately sorted, mainly quartz, minor mafics; 5% gravel gray, subangular, <1/2", 5%; strong reaction to HCl for gravel and moderate overall
850-860	Sandy clay: 50% clay, tan, high plasticity overall w/large dense lenses; 50% sand, fine-medium, subrounded to subangular, moderately sorted, mostly tan w/some white/red/black, quartz and calcite, feldspar and mafics; strong reaction to HCl
860-890	<u>Clayey sand</u> : 70% sand, mainly fine-medium grained w/occasional coarse, subrounded to subangular, moderately sorted, tan w/some red/black, mainly quartz, some feldspar and mafics; 30% clay gray; mild reaction to HCl
890-990	Clayey sand: 60% sand, fine, well sorted, tan; 40% clay, high plasticity, tan; mild reaction to HCl
990-1000	<u>Clayey sand</u> : 75% sand, fine, well sorted, tan; 25% clay, high plasticity, tan; moderate reaction to HCl
1000-1010	Clayey sand: 55% sand, fine, well sorted, tan; 45% clay, high plasticity, tan; high reaction to HCl

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS
Notes: cuttings not washed, recorded wet

Contractor: Hydro Resources Notes:

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud Rotary

Depth, ft bgl	Description
1010-1020	Clayey silt: 60% silt; mostly tan, some white; 40% clay, moderate plasticity, tan; moderate reaction to HCl
1020-1030	Silty clay: 70% clay, dense, yellow-tan; 30% silt, yellow-tan; medium reaction to HCl
1030-1040	Silty clay: 90% clay, dense, high plasticity, yellow-tan; 10% silt, yellow-tan; slight rxn to HCl
1040-1050	Silty clay: 80% clay, dense, high plasticity, yellow-tan; 20% silt – yellow-tan w/some white grains; very slight reaction to HCl
1050-1060	Sand silty clay: 80% clay, very dense, moderate plasticity, yellow-tan; 10% silt, yellow-tan; 10% sand, very fine, white/translucent, quartz; slight reaction to HCl
1060-1070	Silty sandy clay: 70% clay, high plasticity, moderately stiff, yellow-tan; 20% sand, very fine, subangular to subrounded, well sorted, mostly quartz, white/translucent; 10% silt, yellow-tan
1070-1080	<u>Clayey silty sand</u> : 50% sand, fine grained, subangular to subrounded, well sorted, mostly quartz and feldspars, tan; 30% silt, tan; 20% clay, moderate plasticity, tan w/some white lenses
1080-1090	<u>Clay</u> : clay light red, dense, high plasticity. Some fine sand grains observed but < 10%
1090-1100	<u>Clay</u> : dense red, tan, high plasticity, moderate reaction to HCl
1100-1110	<u>Clay</u> : dense, yellow tan, high plasticity, moderate reaction to HCl
1110-1120	Silty clay: yellow tan, high plasticity, moderate reaction to HCl
1120-1130	<u>Clay</u> : dense, yellow tan, high plasticity, moderate reaction to HCl
1130-1140	Silty clay: yellowish tan, high plasticity, moderate reaction to HCl
1140-1150	Clayey, silty sand: 40% sand, fine, tan, some white; 30% silt, tan; 30% clay, tan, high plasticity, 30%; slight reaction to HCl
1150-1160	Sandy clay: 60% clay, tan, dense, high plasticity; 40% sand, fine, unconsolidated to moderate consolidation, tan, some white, moderate reaction to HCl
1160-1170	<u>Clay</u> : yellow tan, dense, high plasticity, slight reaction to HCl
1170-1180	<u>Clay</u> : tan, dense, high plasticity; minor silt; slight reaction to HCl
1180-1190	<u>Clay</u> : tan, dense, high plasticity; strong reaction to HCl
1190-1200	Silty clay: 60% clay, grayish brown, high plasticity; 40% silt, grayish brown to white, moderate consolidation; strong reaction to HCl
1200-1210	<u>Clay</u> : dense, tan to reddish brown, high plasticity; moderate reaction to HCl
1210-1220	Silty clay: 60% clay, tan, medium plasticity; 40% silt, moderate consolidation, reddish brown, tan; moderate reaction to HCl
1220-1230	Clayey silty sand: 50% sand, light brown to tan, very fine to fine grained, subangular to subrounded, moderately sorted, quartz, feldspars, few dark lithics; 30% silt, moderately consolidated in lenses, light brown to tan; 20% clay, tan, soft, moderate plasticity

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS
Notes: cuttings not washed, recorded wet

Contractor: <u>Hydro Resources</u>	Notes: <u>cuttings not was</u>
Rig: 10031	
Drilling bit: 17.5-in. milltooth	
Drilling method: Reverse Mud Rotary	

Depth,	iod: Reverse Mud Rotary
ft bgl	Description
	Clayey silty sand: 70% sand, light brown to tan, very fine to fine grained, subangular to
1230-1240	subrounded, moderately sorted, quartz, feldspars, few dark lithics; 20% silt, tan, moderate
	consolidation; 10% clay, tan, soft; moderate reaction to HCl
	Silty sand: 80% sand, tan, very fine to fine grained, subangular to subrounded, moderately sorted,
1240-1250	quartz, feldspars, few dark lithics, moderately consolidated; 20% silt, tan, moderately
1250 1260	consolidated; moderate reaction to HCl
1250-1260	Silty clay: clay, light brown, moderate density, high plasticity; reacts moderately to HCl
1260-1270	<u>Clayey sandy silt</u> : silt, light brown to tan; <10 sand, quartz, feldspar, medium; strong reaction with HCl;
1270-1280	Silty sand: 60 % sand, medium to coarse grained, quartz, feldspar, lithics, some subrounded,
12/0-1280	poorly sorted; 40% silt; slight reaction to HCL
1280-1290	Sandy silt: 60 % silt, light brown to tan, not very dense, moderate reaction to HCl; sand 40%,
1200-1270	medium to coarse grained, subangular, quartz, feldspar, lithics
1290-1300	Silty sand: 60% sand, subrounded to rounded, fine to medium grained, quartz, feldspar, black
1290 1300	lithics; 40% silt, high plasticity, black streaks, mafics of sand slight reaction to HCl,
1300-1310	Silty sand: 60% sand, medium to coarse grained, , quartz, feldspar, lithics; 40% silt, light brown,
	mafics to sand, medium plasticity, black streaks; reaction to HCl
1310-1320	Silty clay: 70% clay, dense, high plasticity, tan; 30% silt, tan
1320-1330	Silty clay: 75% clay, high plasticity, tan; 25% silt, tan; reacts to HCl
1330-1340	Silty clay: 80% clay, dense, high plasticity, tan; 20% silt; reacts to HCl
1340-1350	Silty clay: 50% clay, high plasticity, tan, dense; 50% silt, tan; reacts to HCl
1350-1360	Sandy clay: 70% clay, high plasticity, tan; 30% silt, tan; reacts to HCl
1360-1370	Silty clay: 70% clay, high plasticity, tan; 30% silt, tan; reacts to HCl
1370-1380	Sandy clay: 80% clay, high plasticity, dense, tan; 20% sand, medium to fine, subangular, well sorted, tan; reacts to HCl
1200 1200	Sandy clay: 75% clay, high plasticity, dense, tan; 25% sand, medium to fine, well sorted, tan;
1380-1390	reacts to HCl
1390-1400	Silty clay: 80% clay, high plasticity, dense, tan; 20% silt, tan; reacts to HCl
1400-1410	Silty clay: 90% clay, high plasticity, dense, tan; 10% silt, tan; reacts to HCl
1410-1420	Sandy clay: 65% clay, high plasticity, dense, tan; 35% sand, medium to fine, well sorted, angular to subrounded; reacts to HCl
1420-1430	Silty clay: 90% clay, high plasticity, tan; 10% silt, tan; reacts to HCl
	Sandy clay: 70% clay, medium plasticity, tan; 30% sand, angular to subrounded, coarse medium
1430-1440	to fine, tan; reacts to HCl

Contractor: <u>Hydro Resources</u>
Rig: <u>10031</u>

Drilling bit: 17.5-in. milltooth

BOREHOLE SPUD DATE: 8/24/2023
CLIENT: Huitt-Zollars
PROJECT: Well 9R
LOCATION: Rio Rancho
BOREHOLE NAME: Well 9R
GEOLOGIST: AKM/ZBC/FGS
Notes: cuttings not washed, recorded wet

Drilling meth	od: Reverse Mud
Depth, ft bgl	Description
1440-1450	Silty clay: 75% clay, medium plasticity, tan; 25% silt, tan; reacts to HCl
1450-1460	Silty clay: 70% clay, medium plasticity, tan; 30% silt, tan; reacts to HCl
1460-1470	Sandy clay: 60% clay, medium plasticity, tan; 40% sand, coarse to fine, angular to subangular, well sorted, tan; reacts to HCl
1470-1500	Silty sand: 80% sand, fine to medium, moderately sorted, subangular, tan; 20% silt, tan; mild rxn to HCl
1500-1560	Silty sand: 80% sand, medium to coarse, moderately sorted, subangular, tan; 20% silt, tan, mild reaction to HCl
1560-1570	Silty sand: 60% sand, fine, tan; 40% silt, tan; mild reaction to HCl
1570-1610	Sand: medium to coarse, moderately sorted subangular to subrounded, tan, mostly quartz w/some feldspars and mafics; minor silt, minor reaction to HCl
1610-1640	Silty sand: 80% sand, coarse to medium, well sorted, angular to subangular, tan; 20% silt, tan; reacts to HCl
1640-1670	Sandy clay: 75% clay, medium plasticity, tan; 25% sand, angular to subangular, well sorted, tan; reacts to HCl
1670-1750	Silty sand: 75% sand, fine to medium, subangular to subrounded, tan; 25% silt, tan; mild reaction to HCl
1750-1760	<u>Clay</u> : moderate plasticity, dense, tan
1760-1770	<u>Clayey sand:</u> 60% sand, mostly tan, minor white/black, fine grained, moderately well sorted, subrounded to subangular, mostly quartz, minor mafics, feldspar; 40% clay, tan, high plasticity; mid reaction to HCl
1770-1780	<u>Clayey sand:</u> 55% sand, mostly tan, minor white/black, fine to medium grained, moderately sorted, subrounded to subangular, mostly quartz, minor feldspar; 45% clay, high plasticity, tan; no reaction to HCl
1780-1800	Sandy clay: 50% clay, tan, high plasticity;50% sand, fine to medium grained, moderately sorted, subrounded to subangular
1800-1810	<u>Clayey sand</u> : 60% sand, fine to medium grained, moderately sorted, subrounded to subangular, mostly quartz; 40% clay, tan, medium plasticity
1810-1830	<u>Clayey sand</u> : 60% sand, fine to coarse, moderately sorted, subrounded to subangular, mostly quartz, minor feldspar; 40% clay, tan, low plasticity
1830-1840	Sand: medium grained, moderately sorted, subrounded to subangular, mostly quartz w/feldspar, chert; minor clay

	BOREHOLE SPUD DATE: 8/24/2023
	CLIENT: Huitt-Zollars
	PROJECT: Well 9R
	LOCATION: Rio Rancho
	BOREHOLE NAME: Well 9R
	GEOLOGIST: AKM/ZBC/FGS
	01010 010 11 11111111111111111111111111
N	otes: cuttings not washed, recorded wet

Contractor: Hydro Resources

Rig: 10031

Drilling bit: 17.5-in. milltooth

Drilling method: Reverse Mud

Depth, ft bgl	Description
1840-1850	Sand: medium grained, moderately sorted, subrounded to subangular, mostly quartz w/feldspar and chert
1850-1870	Sand: medium grained, moderately sorted, subrounded to subangular, mostly quartz w/feldspar and chert
1870-1890	Sand: fine to medium grained, moderately sorted, subrounded to subangular, mixed lithology; minor clay
1890-1900	Clay: tan/brown, high plasticity, really slowed drill down; no reaction to HCl
1900-1910	Silty sand: 70% sand, medium to coarse grained, subrounded, moderately sorted, quartz, feldspar, lithics; 30% silt; slight reaction to HCl
1910-1920	Silty sand: 80% sand, medium to coarse grained, subrounded, moderately sorted quartz, feldspar, lithics; 20% silt; slight reaction to HCl
1920-1930	Clayey silty sand: 60% sand, medium to fine grained, subangular to rounded, quartz, feldspar, lithics; 20% silt; 20% clay, low plasticity; strong reaction to HCl
1930-1950	<u>Clayey silty sand:</u> 70% sand, coarse to fine grained, poorly sorted, subangular to rounded, quartz, feldspar, lithics; 20% silt; 10% clay, plastic; slight reaction to HCl
1950-1960	Silty sand: 80% sand, medium to coarse grained, angular to subrounded, mainly quartz, some feldspar and lithics; 20% silt; very strong reaction to HCl
1960-2000	Silty sand: 80% sand, medium to fine grained, subangular to rounded, quartz, feldspar, lithics; 20% silt; reaction to HCl
2000-2005 TD	Silty sand: 80% sand coarse to fine grained, subangular to rounded quartz, feldspar, lithics, small rxn to HCl; 20% silt; slight reaction to HCl

Appendix D.

Drilling fluid reports, City of Rio Rancho Well 9R

Hydro Resourd	es					Hydro					DRILLIN	G MUD F	REPORT	1		
13027 County I	Rd 18						/dr	0	Da	te	Mea	sured D	epth	T.V. Depth		
FT Lupton, CO	80621					3	resout	rces	08/2	4/23	80 ft.			80	ft	
Phone: 303-85	7-7540								Spud	Date	Pre	sent Act	ivity	Rig	No.	
Version 3.75												Drilling		100	31	
OPERATOR:		Cit	y of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources						
Operator's Repre	esentativ	e:				Contrac	tor's Rep	oresenta	itive:	Ty Curti	s					
Well Name 8	k No.	Field:				County,	Parish:			Sand	oval		State:	New N	lexico	
Rio Ranco	9A	Legal:				VOLU	JMES	PUMP I	NFORMAT	TION			HYDRA	AULICS		
BIT DATA			DRILLING			Pit Vol.	350	PUI	MP #1	PUM	P #2			VELOCI		
Bit Size 17.5	Size	30	set @		Ft		apacity		X				Pipe	37 ft		
Bit Type Milltoot Bit No. 1	hSize Size		set @		Ft Ft		bls olume		5 x9 SPM				Collar	50 ft 3 PRESS		
Jets (32nd)	Size		set @		Ft		bbls		G/ST			Onto	OLATIN	J I KESS	OILL	
0010 (02110)		rill Collar	11		180		olume		GPM			ВОТ	. UP	1	min	
		rill Collar					bbls	10.55				SURF.			min	
		Drill Pipe		4.5			Cir Vol bbls		al GPM 143	Total 10.	BPM	TOT. C	IR TIME	34	min	
Sample Fro 🗸 F		Drill Pipe Pit	-	d Proper	tios		te Alkalir		Check	10.	.55	HVDD	AULICS			
Flowline Temperatu		PIL	IVIU	_	lies	Calculat	e Alkalli		CHECK	lot \/a	alo oitu	HIDK	AULICS	Nozzle	Λ κοο	
•				X						Jet Ve				NOZZIE	Alea	
Time Sample Taker	1			13:45						Horse				F/	20	
Depth (ft)				80						Impact					CD	
Mud Weight (ppg)				8.40						Press Lo				8.4	ppg	
Mud Gradient (psi/f		0-		0.4368						Press Lo						
Funnel Viscosity @	I	°F		29						mmende	ed Equip	ment				
Plastic Visc.cp @	75	°F		3		Cntrfuge		Shaker	✓	Desander						
Yield Point (lb/100ft				0		Degasser		Desilter		Other						
Gel Strength (lb/100				0						mended		<u> </u>				
Gel Strength (lb/100		nın		0			ıthority of:		Company Represent				ng Contra	ctor	ı	
Gel Strength (lb/100			x				l Wt:	8.4-9.0 Filtrate:			10-12cc		osity:	31-35		
•	n3/30 min)		35.2			LC	CM:						s Lime:		lb/bbl	
Filtrate API HTH	P (cm3/30	min)	X			RECOMMENDED TOURLY TREATMENT										
Cake Thickness	(/32nds)		1			Finish adding open sx of Platinum Pac										
Solids Content (%	6 by vol)		0.5			 										
Water Content (% by Vol.)		99.5													
Sand Content	(% by vol)			Trace												
Bentonite Content	(lb/bbl)			X	Evening shift add 1 bkt of Flopam slowly over shift, if it blinds off screens stop											
pH 🗸 Strip		Meter		9.0	adding for 2 hrs and add 1 vis cup at a time											
Alkalinity Mud (Pm)	cm3 N/5	0 Acid		X												
Alkalinity, Pf / Mf				.30/.65												
Chloride (mg/l)				140												
Total Hardness as (Calcium (m	ıg/l)		20												
Oil Content (% by	vol)			X												
LCM (lb/bbl)				X												
Excess Lime (lb/bl	ol)			X												
						DAILY REMARKS										
		olids Ana														
L.G. Solids	%		H.G. Solids		%											
L.G. Solids Corrected Solid	ppb	%	H.G. Solids	je Sp. Gr.	ppb	-										
	SUPER		PLATINUM	PLATIN		DF202	Hole	FEL	PEL	NW-	BLEAC					
CHEMICAL	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60	220	Н					
Starting Inventor	y 192	34	80	40	32	32	240	144	144	0	0					
Chemicals Receive	-			- 10			0.10									
Closing Inventor		33 1	74 6	40 0	31 1	32 0	240 0	144 0	144 0							
Daily Cos		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0							
		' ' 	<u> </u>	-	-											
CHEMICALS																
Starting Inventory																
Chemicals Received													Drayage:			
Closing Inventory Chemicals Used	1					1							ily Cost	\$	-	
Daily Cost	1					1					Est	Est. Da Cumulat	ily Cost:	<u>\$</u>		
	CAL REP:		l Iyan Brook	' S	\\/ \ D	REHOUSE		1303	7 CR 18			NAME:				
	HONE NO.		03-720-477			ADDRESS	F		n, CO 8062	21		PHONE:				
	SERVICE:					PHONE:			357-4171			PHONE:				

ANS. SERVICE:

Phone: 303-857-7540 08/24/23 Drilling 10031 Version 3.75 City of Rio Rancho OPERATOR: CONTRACTOR: Hvdro Resources Operator's Representative: Contractor's Representative: Ty Curtis Well Name & No. Field: County, Parish: Sandoval State: **New Mexico** Rio Ranco 9A Legal: **VOLUMES PUMP INFORMATION HYDRAULICS** Pit Vol. 350 PUMP #1 PUMP #2 ANNULAR VELOCITY BIT DATA CASING & DRILLING ASSEMBLY Bit Size Size 30 set @ 80 Pipe Capacity Drill Pipe Bit Type Milltoot Size set@ 7 bbls Drill Collar Ann Volume 0 SPM SPM CIRCULATING PRESSURE Size set @ 120 bbls 0.00 G/S1 Jets (32nd) set @ 0.00 Size Orill Collar 4.5 180 Hole Volume **Drill Collar** BPM SURF. TO BIT 127 bbls Drill Pipe TOT. CIR TIME Total GPN Total BPM Calculate Alkalinity **HYDRAULICS** ✓ Flowline Flowline Temperature (°F) Jet Velocity Nozzle Area Γime Sample Taken 07:00 Horsepower 331 Impact Force Depth (ft) Mud Weight (ppg) 8.5 Press Loss at Bit 0.442 Press Loss at Bit Mud Gradient (psi/ft) 30 **Recommended Equipment** 5 Plastic Visc.cp @ 0 Yield Point (lb/100ft2) **Recommended Mud Properties** Gel Strength (lb/100ft2) 10-sec 0 Gel Strength (lb/100ft²) 10-min 0 By Authority of: Company Representative Drilling Contractor Gel Strength (lb/100ft²) 30-min Mud Wt: 10-12c Viscosity: API (cm3/30 min) 13.6 API HTHP (cm3/30 min) RECOMMENDED TOURLY TREATMENT X Add open sx of Platinum Pac ake Thickness (/32nds) ids Content (% by vol) 98.7 Vater Content (% by Vol.) and Content Trace Bentonite Content (Ib/bbl) Meter Strip 8.0 Alkalinity Mud (Pm) cm3 N/50 Acid Alkalinity, Pf / Mf 25/.60 140 Chloride (mg/l) Total Hardness as Calcium (mg/l) 20 Oil Content (% by vol) X .CM (lb/bbl) excess Lime (lb/bbl) DAILY REMARKS Solids Analysis .G. Solids H.G. Solids .G. Solids H.G. Solids ppb ppb Corrected Solids Average Sp. Gr. SUPER SODA PLATINUM PLATIN DF202 HOLE PEL BLEAC CHEMICALS FLOPAM PLUG им Рас GEL X ASH PAC UL 0 PLUG PLUG 60 220 Н Starting Inventory 172 33 74 40 31 32 240 144 144 Chemicals Received 172 32 74 38 240 144 144 Closing Inventory 31 32 0 Chemicals Used 0 0 0 0 0 0 \$0 \$0 Daily Cost \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage Closing Inventory Est. Taxes: \$ Chemicals Used Est. Daily Cost: Daily Cost Est. Cumulative Cost: Ryan Brooks 13027 CR 18 NAME: TECHNICAL REP WAREHOUSE ADDRESS Ft. Lupton, CO 80621 **CELL PHONE NO** 303-720-4775 PHONE:

IN CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS
AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES
RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

(303) 857-4171

PHONE:

PHONE:

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621 Phone: 303-857-7540

r none. 3		7340								Spuu		FIE	SEIIL AC	-	_	NO.		
Version 3.75									08/2	4/23		Drilling		100	031			
OPERATOR: Cit			ty of Rio R	CONTRACTOR:			Hydro Re	sources	i									
Operator's Representative:				ĺ			Contrac	tor's Rep			Ty Curti							
Well Name & No. Field:							County,			1	Sand			State:	New N	/lexico		
Rio Ranco 9A Legal:								JMES	DIIMDI	NFORMA [*]			Ī		RAULICS			
				DDILLING	ACCEN	IDLV						ים אים						
				DRILLING		-	Pit Vol.	350	PUI	MP #1	PUIV	IP #2		NNULAR	VELUCI	11		
	17.5	Size	30	set @	80	Ft		apacity						Pipe				
Bit Type	Milltooth	Size		set @		Ft	8 b	obls		X		X	Drill	Collar				
Bit No.	1	Size		set @		Ft	Ann V	olume/	0	SPM	0	SPM	CIR	CULATING	G PRESS	SURE		
Jets (32nd) Size		set @		Ft	143	bbls	0.00 G/ST		0.00									
00.0 (0	,		ill Collar	11	4.5	180		/olume	0.00	GPM	0.00		RO.	Γ. UP				
				11	4.5	100												
			ill Collar	0.075		200		bbls		BPM	+	DD14		TO BIT				
			Orill Pipe		4.5	233		Cir Vol	I ota	al GPM	Total	BPM	101.0	IR TIME				
			Orill Pipe				501	bbls										
Sample Fro	✓ Flo	owline	Pit	Mu	d Propei	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS				
Flowline Te	mperature	(°F)			X						Jet Ve	elocity			Nozzl	e Area		
Time Samp	lo Takon				17:00							power						
Depth (ft)	ie raken				413							t Force						
Mud Weigh					8.6							oss at Bit						
Mud Gradie)			0.4472						Press Lo	oss at Bit						
Funnel Visc	osity @		°F		30					Reco	mmende	ed Equip	ment					
Plastic Visc	.cp @	75	°F		5		Cntrfuge		Shaker	7	Desander							
Yield Point	•)			0		Degasser		Desilter	П	Other							
Gel Strengt			ec		0		g			Recom	mended	Mud Pro	perties					
Gel Strengt					0		D _V Λι	uthority of:		Company F				ing Contrac	otor			
											•					T		
Gel Strengt			iin		X			d Wt:	8.4-9.0	Filtr	ate:	10-12cc		cosity:	31-34			
		3/30 min)			11.2		LC	CM:						s Lime:		lb/bbl		
Filtrate A	API HTHP	(cm3/30	min)		X					RECOMME	NDED TO	OURLY TR	REATMEN	IT				
Cake Thick	ness (/	/32nds)			1		Evening shift please add 2 sx of Platinum Pac over your shift											
Solids Cont	ent (%	by vol)			2.0													
Water Cont	ent (%	6 by Vol.)			98													
Sand Conte		% by vol)			Trace													
Bentonite C	•				X													
pH 🗸	Strip		/leter		7.0													
Alkalinity M																		
		CIII3 IN/50	J ACIO		X													
Alkalinity, F					.20/.50													
Chloride (m					140													
Total Hardn		•	g/l)		40													
Oil Content	(% by	vol)			X													
LCM (lb/b	obl)				X													
Excess Lim	e (lb/bbl)			X													
											DAILY R	EMARKS						
		S	olids Ana	alvsis														
ا د د د داناه				•		0/												
L.G. Solids		%		H.G. Solids		%												
L.G. Solids		ppb		H.G. Solids		ppb												
Correct	ed Solids		%	Averaç	ge Sp. Gr.				T -							T		
C	EMICA: C	SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC						
CH	EMICALS	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60	220	Н						
Ctorting	Inventory	172	32	74	38	31	32	240	144	144						1		
		172	32	74	30	31	32	240	144	144								
Chemicals I																		
	Inventory	172	32	74	38	31	32	240	144	144								
	als Used	0	0	0	0	0	0	0	0	0								
	aily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0						<u> </u>		
Снеміс	CALS																	
Starting Inv	entory											•	•					
Chemicals Received												Fst	Drayage:					
													st. Taxes:	\$				
Closing Inventory						-	-		 									
Chemicals I	usea													aily Cost:	\$			
Daily Cost												Est	. Cumula	tive Cost:	\$	-		
-	TECHNIC	AL REP:	F	Ryan Brool	ks	WAR	EHOUSE		1302	7 CR 18			NAME:					
(CELL PH	ONE NO.	3	03-720-47	75	Α	DDRESS:	F	t. Luptoi	n, CO 806	21		PHONE:					
ANS. SERVICE:							PHONE:			357-4171			PHONE:					

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621 Phone: 303-857-7540

r none. 3		7340								Spuu		1	SEIIL ACI	-	_	NO.
Version 3.7	5									08/2	4/23		Drilling		100	031
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources					
Operator's	s Repres	sentative		ĺ			Contrac	tor's Rep			Ty Curti					
	Name &		Field:				County,			1	Sand			State:	New N	/lexico
	Ranco 9		Legal:					JMES	DIIMDI	NFORMA [*]		- · · · ·			AULICS	ioxioo
			_	L R DRILLING	ACCEN	IDLV						ID #0	Α.			TV
BIT D							Pit Vol.	350	PUI	MP #1	PUIV	IP #2		NNULAR	VELUCI	11
	17.5	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft	12	bbls		X		X	Drill	Collar		
Bit No.	1	Size		set @		Ft	Ann V	olume/	0	SPM	0	SPM	CIR	CULATING	G PRESS	SURE
Jets (3	(2nd)	Size		set @		Ft	194	bbls	0.00	G/ST	0.00					
0010 (0	,		ill Collar		4.5	180		/olume	0.00	GPM	0.00		BO1	Γ. UP		
				- ' '	4.0	100								TO BIT		
			ill Collar	0.075		44.5		bbls		BPM	+					
			Orill Pipe		4.5	415		Cir Vol	I ota	al GPM	Total	BPM	101.0	IR TIME		
			Orill Pipe				556	bbls								
Sample Fro	✓ Flo	owline	Pit	Mu	d Propei	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS		
Flowline Te	mperature	e (°F)			Х						Jet Ve	elocity			Nozzl	e Area
Time Samp	lo Takon				08:00							power				
Depth (ft)	ie raken				595						Impact					
Mud Weigh					8.8							ss at Bit				
Mud Gradie)			0.4576						Press Lo	ss at Bit				
Funnel Visc	cosity @		°F		30					Reco	mmende	ed Equip	ment			
Plastic Visc	.cp @	75	°F		5		Cntrfuge		Shaker	J	Desander					
Yield Point)			0		Degasser		Desilter	П	Other					
Gel Strengt			ec		0		g			Recom	mended	Mud Pro	perties			
Gel Strengt					0		Rv Δι	uthority of:		Company F			•	ing Contra	etor	
											•			_		I
	rength (lb/100ft²) 30-min x API (cm3/30 min) 10.4							d Wt:	8.4-9.0	Filtr	ate:	10-12cc		osity:	31-34	11 // 1 1
	, , ,						LC	CM:						s Lime:		lb/bbl
Filtrate A	API HTHP	(cm3/30	min)		X					RECOMME	NDED TO	OURLY TR	REATMEN	IT		
Cake Thick	ness (/	/32nds)			1		Mud lool	ks good a	t this tim	e, if fresh	water is a	idded add	d 1 sx of	Platinum	oac	
Solids Cont	ent (%	by vol)			3.5		for every	/ 50 bbls	added							
Water Cont	ent (%	6 by Vol.)			96.5											
Sand Cont	ent (9	% by vol)			.25											
Bentonite C					X											
pH 🗸	Strip		/leter		7.0											
Alkalinity M					X											
Alkalinity, F		UIIIO 14/00	Acid		.10/.35											
Chloride (n			////		140											
Total Hardn		•	g/I)		40											
Oil Content		vol)		-	X											
LCM (lb/l					X											
Excess Lim	e (lb/bbl)			X											
											DAILY R	EMARKS				
		S	olids Ana	alysis												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
	ed Solids	PPO	%		ge Sp. Gr.	PPO										
COLLECT	ca oolius		/0					1	PEL	1		1	I			1
Сн	EMICALS	SUPER	SODA	PLATINUM		FLOPAM	DF202	Hole	PLUG	PEL	NW-	BLEAC				
011	220	GEL X	ASH	Pac UL	им Рас	. LOI AIVI	0	PLUG	30	PLUG 60	220	Н				
Starting	Inventory	172	32	74	38	31	32	240	144	144						
Chemicals																
	Inventory	172	32	74	36	31	32	240	144	144						
	als Used	0	0	0	2	0	0	0	0	0						1
L	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		I				
Снеміс	CALS															
Starting Inv	entory															
Chemicals I													Est.	Drayage:		
Closing Inve														st. Taxes:	\$	-
Chemicals Used							Ì	Ì		†				aily Cost:	\$	-
Daily Cost												Fet		tive Cost:	\$	_
Duny OUSI			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		LSI	. Jamuia	0031.	Ψ	
			ı					ī	40.55	T OF 15		ī		ı		
	TECHNIC					1	EHOUSE			7 CR 18			NAME:			
(CELL PH					Α	DDRESS:	F		n, CO 806	21	ļ	PHONE:	ļ		
	ANS. S	ERVICE:	I				PHONE:		(303) 8	357-4171		I	PHONE:			

Hydro R	esource	es										DRILLIN	G MUD	REPORT		5
13027 C							H	ydı	ro	Da	ate	Mea	asured D	Depth	T.V. Dep	oth
FT Lupt	•							resou	irces		26/23		649	•	649	
Phone:											Date	Dro				
		-7340								4 .		Pre	sent Ac	•	Rig	
Version 3.7											24/23		Drilling	1	100	031
OPERAT				ty of Rio R	ancho			ACTOR:		Hydro Re						
Operator ^b								tor's Rep	oresenta	ative:	Ty Curti			1 -		
	Name &		Field:				County,				Sand	oval	•	State:		/lexico
	Ranco 9		Legal:					UMES		INFORMA					AULICS	
BIT D			ASING 8	DRILLING			Pit Vol.	350	PU	MP #1	PUN	IP #2	Α	NNULAR	VELOCI	TY
Bit Size	17.5	Size	30	set @	80	Ft	Pipe C	Capacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft	13	bbls		X		X	Drill	Collar		
Bit No.	1	Size		set @		Ft	Ann V	/olume	0	SPM	0	SPM	CIR	CULATIN	G PRESS	SURE
Jets (3	32nd)	Size		set @		Ft	209	bbls	0.00	G/ST	0.00					
		Dr	ill Collar	11	4.5	180	Hole \	/olume		GPM			BO	T. UP		
		Dr	ill Collar				222	bbls		BPM			SURF.	TO BIT		
		a e	Orill Pipe		4.5	469		Cir Vol	Tota	al GPM	Total	BPM		IR TIME		
			Orill Pipe					bbls							<u> </u>	
Sample Fro	√ FI		Pit		d Proper	rtios		te Alkalir	ity	Check			HYDR	AULICS		
Flowline Te			⊒F IL	IVIU		ties	Calcula	te Aikaiii		CHECK	lot \//	elocity	IIIDK	AULICO	Nozzla	e Area
		(1)			X 47-45						_		I		NOZZIE	e Alea
Time Samp	ole Taken				17:15							power				
Depth (ft)	-				649							t Force				
Mud Weigh					8.8							ss at Bit				
Mud Gradie)	I 0=		0.4576						Press Lo					
Funnel Vis		1	°F		30			_			ommende	ed Equip	ment			
Plastic Visc	c.cp @	75	°F		5		Cntrfuge		Shaker	<u> </u>	Desander					
Yield Point	(lb/100ft2)			0		Degasser		Desilter		Other					
Gel Streng	th (lb/100f	t2) 10-s			0					Recom	mended	Mud Pro	•			
Gel Streng			nin		0		By Au	uthority of:	√	Company I	Representa	ative	Drill	ling Contra	ctor	
Gel Streng	th (lb/100f	t ²) 30-m	nin		X		Mud	d Wt:	8.4-9.0	Filtr	rate:	10-12cc	Visc	cosity:	31-34	
	API (cm	3/30 min)			9.6		LC	CM:					Exces	s Lime:		lb/bb
	API HTHP	(cm3/30	min)		X					RECOMMI	ENDED TO	URLY TR	REATMEN	IT		
Cake Thick	kness (/32nds)			1		Evening	shift plea	ise add 2	2 sx of Pla	tinum pac	slowly o	ver shift			
Solids Con	itent (%	by vol)			3.5											
Water Con	tent (%	6 by Vol.)			96.5											
Sand Con		% by vol)			Trace											
Bentonite (Content (lb/bbl)			X											
pH ✓	Strip		/leter		7.0											
Alkalinity M		cm3 N/50) Acid		X											
Alkalinity,					.10/.30											
Chloride (r					140											
Total Hardi			g/l)		40											
Oil Conten	t (% by	vol)			X											
•	/bbl)				X											
Excess Lin	ne (lb/bbl)			X											
											DAILY R	EMARKS				
		S	olids Ana	alysis												
L.G. Solids	3	%		H.G. Solids		%										
L.G. Solids		ppb	<u> </u>	H.G. Solids	<u></u>	ppb										
Correc	ted Solids		%	Averag	je Sp. Gr.											
		SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC				
CH	HEMICALS	GEL X	ASH	PLATINUM PAC UL	UM PAC	FLOPAM	0	PLUG	PLUG	PLUG 60	220	H				
Ot ::	January 1					64			30			 		-		
	Inventory	172	32	74	36	31	32	240	144	144		 		 	 	
Closing	Inventory		32	74	35	31	32	240	144	144		 				
	THIVE HILLIA	1//		. /4	. Jij	. 31		. 44U	. 144	. 144						

Officialidate (Cocived					
Closing Inventory				Est. Taxes:	\$ -
Chemicals Used				Est. Daily Cost:	\$ -
Daily Cost				Est. Cumulative Cost:	\$ -
TECHNICAL REP:	Ryan Brooks	WAREHOUSE	13027 CR 18	NAME:	
CELL PHONE NO.	303-720-4775	ADDRESS:	Ft. Lupton, CO 80621	PHONE:	
ANS. SERVICE:		PHONE:	(303) 857-4171	PHONE:	

0

\$0

0

\$0

0

\$0

Est. Drayage

0

\$0

0

\$0

Chemicals Used

CHEMICALS Starting Inventory

Chemicals Received

Daily Cost

0

\$0

0

\$0

1

\$0

0

\$0

Hydro R	esource	es					ш					DRILLIN	G MUD F	REPORT		6
13027 C	ounty R	d 18					H	ya	ГО	Da	ate	Mea	asured D	epth	T.V. Dep	th
FT Lupte	•							reso	urces	08/2	7/23		793	-	· ·	3 ft
Phone:	-									-	Date	Pre	sent Acti		_	No.
		-7340												ivity	_	
Version 3.7							T			08/2			Drilling		100	J31
OPERAT				ty of Rio R	ancho		CONTR			Hydro Re						
Operator'								tor's Re	oresenta	tive:	Ty Curti		ı	01-1-		
	Name &		Field:				County,		I		Sand	oval		State:		lexico
	Ranco		Legal:					JMES		NFORMA		ID #6			AULICS	
BIT D				DRILLING			Pit Vol.	350	PUI	MP #1	PUN	IP #2			VELOCI	ΙY
Bit Size	17.5	Size	30	set @	80	Ft		apacity						Pipe		
Bit Type	Milltooth			set @		Ft		bbls		X		X	Drill (
Bit No.	1	Size		set @		Ft		olume /		SPM	0	SPM	CIRC	CULATIN	G PRESS	SURE
Jets (3	32nd)	Size		set @		Ft		bbls	0.00	G/ST	0.00				1	
		Dı	rill Collar	11	4.5	180		/olume		GPM			BOT	_		
		4	rill Collar					bbls		BPM			SURF.			
		4	Orill Pipe		4.5	613		Cir Vol	Tota	al GPM	Total	BPM	TOT. CI	IR TIME		
	<u> </u>		Orill Pipe				616	bbls								
Sample Fro	o ∠ Fl	owline	Pit	Mu	d Proper	rties	Calculat	te Alkalir	nity 🗀	Check			HYDRA	AULICS		
Flowline Te	emperatur	e (°F)			X						Jet Ve	elocity			Nozzlo	e Area
Time Samp	ole Taken				7:00						Horse	power				
Depth (ft)											Impac	Force				
Mud Weigh	· /										Press Lo	ss at Bit				
Mud Gradie	ent (psi/ft)			0.4628						Press Lo	ss at Bit				
Funnel Vise	cosity @		°F		31					Reco	mmende	d Equip	ment			
Plastic Viso	c.cp @	75	°F		5		Cntrfuge		Shaker	J	Desander					
Yield Point	•)			0		Degasser		Desilter		Other	П				
Gel Streng	th (lb/100f	t2) 10-s	sec		0					Recom	mended	Mud Pro	perties			
Gel Streng	th (lb/100f	t²) 10-n	nin		0		By Au	thority of:	J	Company F	Representa	ative	Drilli	ng Contra	ctor	
Gel Streng	th (lb/100f	t ²) 30-n	nin		X		Muc	d Wt:	8.4-9.0	Filtr	ate:	10-12cc	Visco	osity:	31-34	
Filtrate	API (cm	3/30 min)			10.4		LC	CM:					Excess	s Lime:		lb/bb
Filtrate	API HTHE	cm3/30	min)		X					RECOMM	ENDED TO	URLY TR	EATMEN	Т		•
Cake Thick	ness (/32nds)			1		Please a	add 2 sx c	of Platinu	ım pac ove	er shift					
Solids Con		by vol)			4.3											
Water Con		% by Vol.)	ı		95.7											
Sand Cont	tent (% by vol)			.25											
Bentonite (Content (lb/bbl)			X											
pH 🗸	Strip	<u> </u>	Meter		7.0											
Alkalinity M	lud (Pm)	cm3 N/5	0 Acid		X											
Alkalinity,	Pf / Mf				.10/.30											
Chloride (r					140											
Total Hard			ıg/l)		40											
Oil Content		vol)			X											
`	/bbl)				X											
Excess Lim	ne (lb/bbl)			X											
											DAILY R	EMARKS				
			olids Ana													
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb	0/	H.G. Solids		ppb										
Correc	ted Solids	<u> </u>	%		ge Sp. Gr.	<u> </u>	<u> </u>	I	De:		1	1	1		I	T
CH	IEMICALS	SUPER GEL X	SODA ASH	PLATINUM PAC UL	PLATIN UM PAC	FLOPAM	DF202 0	HOLE PLUG	PEL PLUG 30	PEL PLUG 60	NW- 220	BLEAC H				
Starting	Inventory	172	32	74	35	31	32	240	144	144						
Chemicals	Received															
Closing	Inventory	172	32	74	33	31	32	240	144	144						
	cals Used		0	0	2	0	0	0	0	0						
1	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	I	ı		Ī	1

TECHNICAL REP:	Ryan Brooks	WAREHOUSE	13027 CR 18	NAME:	
CELL PHONE NO.	303-720-4775	ADDRESS:	Ft. Lupton, CO 80621	PHONE:	
ANS. SERVICE:		PHONE:	(303) 857-4171	PHONE:	

Est. Drayage: Est. Taxes:

Est. Daily Cost:

Est. Cumulative Cost:

\$

\$

CHEMICALS
Starting Inventory

Closing Inventory

Chemicals Used
Daily Cost

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.
Version 3.7	' 5									08/2	4/23		Drilling		100	031
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources			-		
Operator's	s Repres	sentativ	e:				Contrac	tor's Re	resenta	tive:	Ty Curti	s				
Well I	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	/lexico
Rio	Ranco 9	9A	Legal:				VOL	JMES	PUMP I	NFORMA [*]	TION			HYDRA	ULICS	
BIT D	ATA	С	ASING 8	DRILLING	3 ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUM	IP #2	Α	NNULAR	VELOCI.	TY
Bit Size	17.5	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft		bbls		Х		X		Collar		
Bit No.	1	Size		set @		Ft	Ann V	olume	0	SPM	0	SPM	CIR	CULATING	3 PRESS	SURE
Jets (3	2nd)	Size		set @		Ft		bbls		G/ST	0.00					
(-			rill Collar	11	4.5	180		/olume		GPM			BOT	Γ. UP		
			rill Collar			.00		bbls		BPM				TO BIT		
			Drill Pipe	6.875	4.5	717		Cir Vol	Tota	I GPM	Total	BPM		IR TIME		
			Orill Pipe					bbls	. 010		. • • •					
Sample Fro	√ <u>El</u>	owline	Pit		d Proper	tioe		te Alkalir	ity	Check			HVDD	AULICS		
Flowline Te			<u></u>	IVIU		ties	Calculat	ie Aikaiii		CHECK	lot \//	alooitu.	IIIDK	AULICS	Nozzl	0 Aroo
		e (r)			X						Jet Ve				Nozzle	e Area
Time Samp	le Taken				16:30							power				
Depth (ft)					897						Impact			ı		
Mud Weigh					8.9						Press Lo					
Mud Gradie)	To-		0.4628					<u> </u>	Press Lo					
Funnel Visc		I	°F		32						mmende	ed Equip	ment			
Plastic Visc	•	75	°F		5		Cntrfuge		Shaker	✓ <u></u>	Desander					
Yield Point	•	•			5		Degasser		Desilter	Ш	Other					
Gel Strengt					0						mended		•			
Gel Strengt			nin		1			uthority of:	J	Company F	Representa	ative	Drill	ing Contrac	ctor	
Gel Strengt					X			d Wt:	8.4-9.0	Filtr	ate:	10-12cc		osity:	31-34	
		3/30 min)			10.4		LC	CM:						s Lime:		lb/bbl
Filtrate A	API HTHP	cm3/30	min)		X					RECOMME		URLY TR	EATMEN	IT		
Cake Thick	ness (/32nds)			1		Continue	e adding of	open sx o	of Platinum	n Pac					
Solids Cont	ent (%	by vol)			4.3											
Water Cont		6 by Vol.))		95.7		Evening	shift plea	ise add 2	2 sx of Plat	inum Pac	: UL over	shift			
Sand Conte		% by vol)			.25											
Bentonite C					X											
pH 🗸	Strip		Meter		7.0											
Alkalinity M		cm3 N/5	0 Acid		X											
Alkalinity, F					.10/.30											
Chloride (m					140											
Total Hardn			ng/l)		40											
Oil Content		vol)			X											
LCM (lb/t	•	<u> </u>			X											
Excess Lim	e (ID/DDI)			X		-				DAILY D	EMARKO.				
											DAILY R	EMARKS				
	1		olids Ana	•	1	I										
L.G. Solids		%		H.G. Solids		%										
L.G. Solids	10 "1	ppb		H.G. Solids	0 0	ppb										
Correct	ed Solids		%	<u> </u>	ge Sp. Gr.			I	De:	1		1		l I		T
Сн	EMICALS	SUPER		PLATINUM		FLOPAM	DF202	HOLE	PEL PLUG	PEL	NW-	BLEAC				
OTT		GEL X	ASH	PAC UL	им Рас	LOIAW	0	PLUG	30	PLUG 60	220	Н				
Starting	Inventory	172	32	74	33	31	32	240	144	144						
Chemicals I																
Closing	Inventory	172	32	72	33	31	32	240	144	144						
Chemic	als Used	0	0	2	0	0	0	0	0	0						
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0						
Снеміс	CALS															
Starting Inv	entory											_		b		
Chemicals I													Est.	Drayage:		
Closing Inve														st. Taxes:	\$	-
Chemicals I													Est. Da	aily Cost:	\$	-
Daily Cost												Est	. Cumula	tive Cost:	\$	-
		_														
•	TECHNIC	AL REP	F	Ryan Broo	ks	WAR	EHOUSE		1302	7 CR 18			NAME:			
	CELL PH			03-720-47			DDRESS:			n, CO 806	21		PHONE:			
		FRVICE					PHONE:			857-4171			PHONE:			

Hydro Resources Hydro **DRILLING MUD REPORT** 8 13027 County Rd 18 Date **Measured Depth** T.V. Depth FT Lupton, CO 80621 08/28/23 1,042 ft. 1042 ft Phone: 303-857-7540 **Spud Date Present Activity** Rig No. 08/24/23 10031 Version 3.75 **Drilling OPERATOR:** CONTRACTOR: City of Rio Rancho Hydro Resources Operator's Representative: Contractor's Representative: Ty Curtis State: New Mexico Well Name & No. Field: County, Parish: Sandoval **VOLUMES** PUMP INFORMATION **HYDRAULICS** Rio Ranco 9A Legal: PLIMP #2 **BIT DATA CASING & DRILLING ASSEMBLY** Pit Vol. 350 **PUMP #1 ANNULAR VELOCITY** 30 set @ Pipe Capacity **Drill Pipe** Bit Size 17.5 80 Size set @ Bit Type Milltooth Size Ft 21 bbls **Drill Collar** 0 SPM CIRCULATING PRESSURE SPM Bit No. Size set @ Ft Ann Volume 0 Size set @ 0.00 G/ST 0.00 Jets (32nd) 320 bbls Ft GPM Drill Colla 4.5 180 Hole Volume BOT. UP **BPM** SURF. TO BIT **Drill Collar** 341 bbls Total Cir Vol Drill Pipe 4.5 862 Total GPM Total BPM TOT. CIR TIME 6.875 H.W. Drill Pipe 691 bbls Flowline Pit Calculate Alkalinity **Mud Properties** Check **HYDRAULICS** Towline Temperature (°F) Jet Velocity X Nozzle Area ime Sample Taken 16:30 Horsepower Depth (ft) 1042 Impact Force Mud Weight (ppg) 8.9 Press Loss at Bit Mud Gradient (psi/ft) 0.4628 Press Loss at Bit unnel Viscosity @ 31 **Recommended Equipment** Plastic Visc.cp @ 5 Desander 5 ield Point (lb/100ft2) Gel Strength (lb/100ft2) 10-sec 0 **Recommended Mud Properties** Gel Strength (lb/100ft²) 10-min 1 By Authority of Gel Strength (lb/100ft²) 30-min X Mud Wt: Filtrate: 10-120 (cm3/30 min) 9.6 API HTHP (cm3/30 min) RECOMMENDED TOURLY TREATMENT 1 (/32nds) Cake Thickness Solids Content (% by vol) 4.3 Evening shift please finish adding open sx of Platinum pac and add 1 more over (% by Vol.) 95.7 Vater Content (% by vol) .25 Bentonite Content (lb/bbl) Strip Meter 7.0 Alkalinity Mud (Pm) cm3 N/50 Acid Alkalinity, Pf / Mf 10/.30 Chloride (mg/l) 140 40 Total Hardness as Calcium (mg/l) (% by vol) (lb/bbl) CM x Excess Lime (lb/bbl) X DAILY REMARKS Solids Analysis

PEL SUPER SODA PLATINUM PLATIN DF202 HOLE PEL NW-BLEAC CHEMICALS FLOPAM PLUG GEL X ASH PAC UL UM PAC Ο PLUG PLUG 60 220 Н 30 32 33 31 32 240 144 Starting Inventory 172 72 144 Chemicals Received 172 32 70 33 31 32 240 144 144 Closing Inventory Chemicals Used 0 0 2 0 0 0 0 0 0 Daily Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Est. Drayage Chemicals Received Est. Taxes: \$ Closing Inventory \$ Chemicals Used Est. Daily Cost:

.G. Solids

Daily Cost

Corrected Solids

ppb

H.G. Solids

Average Sp. Gr

ppb

NAME:	13027 CR 18	WAREHOUSE	Ryan Brooks	TECHNICAL REP:
PHONE:	Ft. Lupton, CO 80621	ADDRESS:	303-720-4775	CELL PHONE NO.
PHONE:	(303) 857-4171	PHONE:		ANS. SERVICE:

Est. Cumulative Cost:

Hydro Resources Hydro 13027 County Rd 18 Date FT Lupton, CO 80621 08/29/23 Phone: 303-857-7540 **Spud Date**

DRILLING MUD REPORT 9 **Measured Depth** T.V. Depth 1157 ft 1,157 ft. **Present Activity** Rig No.

Version 3.7	7 5									08/2	4/23		Drilling		100	031
OPERATO	OR:		Cit	y of Rio R	ancho		CONTRA	ACTOR:		Hydro Re						
Operator'								tor's Re	oresenta	tive:	Ty Curti					
Well	Name &	No.	Field:				County,				Sand	oval		State:	New N	l exico
	Ranco 9		Legal:				VOLU	JMES	PUMP I	NFORMAT				HYDRA		
BIT D	ATA	C	ASING 8	DRILLING	SASSEN	IBLY	Pit Vol.	350	PU	MP #1	PUM	P #2	Al	NNULAR	VELOCI	TY
Bit Size	17.5	Size	30	set @	80	Ft		apacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft	23	bbls		X	2	X	Drill (Collar		
Bit No.	1	Size		set @		Ft	Ann V	olume	0	SPM	0	SPM	CIRC	CULATING	3 PRESS	SURE
Jets (3	32nd)	Size		set @		Ft	353	bbls	0.00	G/ST	0.00					
		Dr	ill Collar	11	4.5	180	Hole V	olume/		GPM			BOT	. UP		
		Dr	ill Collar				376	bbls		BPM			SURF.	TO BIT		
			Orill Pipe	6.875	4.5	977	Total (Cir Vol	Tota	I GPM	Total	BPM	TOT. C	IR TIME		
		H.W. [Orill Pipe				726	bbls								
Sample Fro	✓ Flo	owline	Pit	Mu	d Proper	ties	Calculat	e Alkalir	nity	Check			HYDR	AULICS		
Flowline Te					X						Jet Ve	elocity			Nozzle	e Area
Time Samp	le Taken				07:00						Horse					
Depth (ft)					1157						Impact					
Mud Weigh	nt (ppg)				9.0						Press Lo		ı			
Mud Gradie)			0.468						Press Lo	ss at Bit				
Funnel Visc		•	°F		30				1	Reco	mmende		ment			
Plastic Visc	•	75	°F		5		Cntrfuge		Shaker	√	Desander					
Yield Point	_		•		0		Degasser		Desilter		Other	H				
Gel Strengt			ec		0		20900001		2001101	Recom	mended	Mud Pro	perties			
Gel Strengt					1		Bv Au	thority of:	[J]	Company R				ing Contra	ctor	
Gel Strengt			nin		X			l Wt:	8.4-9.0	Filtra		10-12cc		osity:	31-34	
		3/30 min)			10.4			M:						s Lime:		lb/bbl
	API HTHP		min)		X					RECOMME	NDED TO	URLY TR	REATMEN	Т		ı
Cake Thick		(32nds)	,		1		Pump of	f 200 bbl	s of heav	y mud and	l rebuild v	olume sl	lowly with	fresh wa	ter	
Solids Cont	•	by vol)			5.0					nix 4 sx of						
Water Cont		% by Vol.)			95.0							p 0.0				
Sand Cont		% by vol)			.50											
Bentonite C					X											
pH 🗸	Strip	l N	/leter		7.0											
Alkalinity M	lud (Pm)	cm3 N/50) Acid		X											
Alkalinity, I	Pf / Mf				.10/.30											
Chloride (n	ng/l)				140											
Total Hardr	ness as C	alcium (m	g/l)		40											
Oil Content		vol)			X											
	bbl)				X											
Excess Lim	ne (lb/bbl)			X											
											DAILY RI	EMARKS				
	•		olids Ana	•												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
Correct	ted Solids	<u> </u>	%	Averag	je Sp. Gr.											
Сн	IEMICALS	SUPER GEL X	SODA ASH	PLATINUM PAC UL	PLATIN UM PAC	FLOPAM	DF202 0	HOLE PLUG	PEL PLUG 30	PEL PLUG 60	NW- 220	BLEAC H				
Starting	Inventory	172	32	70	33	31	32	240	144	144						
Chemicals		1														
Closing	Inventory	172	32	70	33	31	32	240	144	144						
Chemic	cals Used	0	0	0	0	0	0	0	0	0						
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0						
Снемі	CALS															
Starting Inv	entory											-				
Chemicals	Received													Drayage:		
Closing Inv	entory												Es	st. Taxes:	\$	-
Chemicals	Used												Est. Da	ily Cost:	\$	-
Daily Cost												Est	. Cumulat	ive Cost:	\$	-
	TECHNIC	AL REP:	F	Ryan Brool	(S	WAR	EHOUSE		13027	7 CR 18			NAME:			
	CELL PH		3	03-720-47	75	A	DDRESS:	F		n, CO 8062	21		PHONE:			
	ANS. S	ERVICE:	I			Ī	PHONE:		(303) 8	357-4171			PHONE:			

Hydro R	asouro.	96										ייי וופס	G MUD REPORT		10
-						0	H\	dr	·	-					
13027 C								resou	rces		ate	iviea	asured Depth	T.V. Dep	otn
FT Lupto										-	9/23		1,238 ft.		
Phone: 3		-7540								Spud	Date	Pre	sent Activity	Rig	No.
Version 3.7										08/2	4/23			10	031
OPERATO				ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	esources				
Operator'	•							tor's Re	oresenta	tive:	Ty Curtis			•	
	Name &		Field:				County,		T.		Sando	oval	State:		Mexico
_	Ranco		Legal:					JMES		NFORMA				AULICS	
BIT D				R DRILLING			Pit Vol.	350	PUI	MP #1	PUM	P #2	ANNULAR	VELOCI	ITY
Bit Size	17.5	Size	30	set @	80	Ft	_	apacity					Drill Pipe		
Bit Type	Milltooth			set @		Ft		bbls		X		(Drill Collar		
Bit No.	1	Size		set @		Ft		olume '		SPM	0	SPM	CIRCULATIN	G PRESS	SURE
Jets (3	32nd)	Size		set @		Ft		bbls	0.00	G/ST	0.00				
			ill Collar	11	4.5	180		/olume		GPM			BOT. UP		
			ill Collar					bbls		BPM			SURF. TO BIT		
		[Orill Pipe	6.875	4.5	1058		Cir Vol	Tota	al GPM	Total	BPM	TOT. CIR TIME		
			Orill Pipe				750	bbls	<u> </u>						
Sample Fro		owline	Pit	Mu	d Prope	rties	Calcula	te Alkalir	nity 🗀	Check			HYDRAULICS		
Flowline Te	emperatur	e (°F)			X						Jet Ve	elocity		Nozzl	le Area
Time Samp	ole Taken				17:00						Horse	power			
Depth (ft)					1238						Impact	Force			
Mud Weigh	nt (ppg)				8.9						Press Lo	ss at Bit			
Mud Gradie	ent (psi/ft)			0.4628						Press Lo	ss at Bit			
Funnel Visc	cosity @		°F		32				•	Reco	mmende	d Equip	ment	-	
Plastic Visc		75	°F		10		Cntrfuge		Shaker	/	Desander				
Yield Point		2)	II.		5		Degasser		Desilter		Other				
Gel Strengt	•	,	ec		1					Recom	mended	Mud Pro	perties		
Gel Strengt			nin		4		By Au	uthority of:	J	Company F	Representa	tive	Drilling Contra	ctor	
Gel Strengt	th (lb/100	ft ²) 30-m	nin		Х			d Wt:	8.4-9.0		ate:	10-12cc	Viscosity:	31-34	
		3/30 min)			8.8		LC	CM:					Excess Lime:		lb/bbl
	API HTHE	cm3/30	min)		X					RECOMM	ENDED TO	URLY TR	EATMENT		•
Cake Thick		/32nds)			1		Evening	shift: fini	sh addin	g fresh wa	ter and mi	ixing 2 s	of Platinum Pac	UL	
Solids Conf		by vol)			4.3				,						
Water Conf		% by Vol.)			95.7										
Sand Cont		% by vol)			.50										
Bentonite C	Content (lb/bbl)			X										
pH ✓	Strip		/leter		7.0										
Alkalinity M	lud (Pm)	cm3 N/50	O Acid		X										
Alkalinity, I	Pf / Mf				.10/.35										
Chloride (r	mg/l)				140										
Total Hardr		alcium (m	g/l)		40										
Oil Content	t (% by	vol)			X										
LCM (lb/	/bbl)				X										
Excess Lim	ne (lb/bb	l)			X										
											DAILY RE	-MARKS			
		S	olids Ana		•										
L.G. Solids		%		H.G. Solids		%									
L.G. Solids		ppb		H.G. Solids		ppb									
Correct	ted Solids		%	Avera	ge Sp. Gr.		<u> </u>						-		_
Сн	IEMICALS	SUPER GEL X	SODA ASH	PLATINUM PAC UL	PLATIN UM PAC	FLOPAM	DF202 0	HOLE PLUG	PEL PLUG 30	PEL PLUG 60	NW- 220	BLEAC H			
Starting	Inventory	172	32	70	33	31	32	240	144	144					1
Chemicals		1	<u> </u>			<u> </u>			<u> </u>	1					
	Inventory	+	32	70	31	31	32	240	144	144					
Chemic	cals Used	0	0	0	2	0	0	0	0	0					
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0					

TECHNICAL REP:	Ryan Brooks	WAREHOUSE	13027 CR 18	NAME:	
CELL PHONE NO.	303-720-4775	ADDRESS:	Ft. Lupton, CO 80621	PHONE:	
ANS. SERVICE:		PHONE:	(303) 857-4171	PHONE:	

Est. Drayage: Est. Taxes:

Est. Daily Cost:

Est. Cumulative Cost:

\$

\$

\$

CHEMICALS
Starting Inventory

Closing Inventory

Chemicals Used

Daily Cost

DRILLING MUD REPORT 11

Date Measured Depth T.V. Depth 1,316 ft. 1316 ft

Spud Date Present Activity Rig No. 108/24/23 Drilling 10031

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.
Version 3.7	' 5									08/2	4/23		Drilling		10	031
OPERATO	DR.		Cit	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources					
Operator's		l sentative		ly or raio ra	unono			tor's Re			Ty Curti					
_	Name &		Field:				County,		Jiegenia	1	Sand			State:	New I	Mexico
	Ranco 9	_	Legal:					JMES	DIIMDII	NFORMA [*]		O Vai	1	HYDRA		IICXICC
BIT D				DRILLING	ASSEM	IRI V	Pit Vol.	350		MP #1		IP #2	Λ	NNULAR		TV
Bit Size	17.5	Size	30	set @	80	Ft		apacity	FUI	VIF #1	F Olvi	IF #Z		Pipe	VLLOCI	-
			30		80	Ft				.,				-		
	Milltooth			set @				bbls		X		X		Collar	2 BBE00	NUDE.
Bit No.	1	Size		set @		Ft		olume		SPM	0	SPM	CIRC	CULATING	J PRESS	SURE
Jets (3	32nd)	Size		set @		Ft		bbls	0.00	G/ST	0.00					
		a e	ill Collar	11	4.5	180		/olume		GPM				Γ. UP		
			ill Collar					bbls		BPM				TO BIT		
		a e	Orill Pipe	6.875	4.5	1136		Cir Vol	Tota	I GPM	Total	BPM	TOT. C	IR TIME		
			Orill Pipe					bbls								
Sample Fro	Flo	owline	Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS		
Flowline Te	mperature	e (°F)			X						Jet Ve	elocity			Nozzl	e Area
Time Samp	le Taken				07:00						Horse	power				
Depth (ft)					1316						Impact					
Mud Weigh	t (ppg)				8.8						Press Lo	ss at Bit				
Mud Gradie)			0.4576						Press Lo	ss at Bit				
Funnel Visc			°F		31					Reco	mmende		ment			
Plastic Visc		75	°F		5		Cntrfuge		Shaker	7	Desander					
Yield Point	_				5		Degasser		Desilter		Other					
Gel Strengt	•		ec		0		Degasser		Desiller	Recom	mended	Mud Pro	nerties			
Gel Strengt					0		Βν Δι	uthority of:		Company F			•	ing Contrac	etor	
Gel Strengt					x			d Wt:	8.4-9.0	Filtr		10-12cc		osity:	31-34	ī
		3/30 min)			8.8			CM:	0.4-9.0	1 110	ale.	10-1200		s Lime:	31-34	lb/bbl
			min)					71VI.		RECOMME	NDED TO	IIDI V TE				10/001
							Mudlool	ro good s					CATIVIEN	11		
	,				3.5		IVIUG 1001	ks good a	it triis tim	e, no treat	ment nee	ueu				
Solids Cont		by vol)			96.5											
Water Cont Sand Cont		% by Vol.) % by vol)			.50											
Bentonite C	•				X											
pH 🗸	Strip		/leter		7.0											
Alkalinity M					x											
Alkalinity, F		CITIO 14/OC	Aciu		.10/.35											
Chloride (n					140											
Total Hardn		alcium (m	a/l)		40											
Oil Content			9/1/		X											
LCM (lb/l		101 /			X											
Excess Lim)			X											
2,0000 2	(15/55)	,									DAILY R	EMARKS				
		9,	olids Ana	lveie												
L.G. Solids	ı	%	l lius Alle	H.G. Solids	1	%										
L.G. Solids		ppb		H.G. Solids		ppb										
	ed Solids		%		ge Sp. Gr.	ррь										
Oonect	ea oolias							I	PEL	I	I	Ī		I I		1
Сн	EMICALS	SUPER		PLATINUM		FLOPAM	DF202	HOLE	PLUG	PEL	NW-	BLEAC				
		GEL X	ASH	Pac UL	им Рас		0	PLUG	30	PLUG 60	220	Н				
Starting	Inventory	172	32	70	31	31	32	240	144	144						
Chemicals			ļ													1
Closing	Inventory	172	32	68	31	31	32	240	144	144						
	cals Used		0	2	0	0	0	0	0	0						
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0						
Снемі	CALS															
Starting Inv	entory															
Chemicals	Received													Drayage:		
Closing Inv	entory												E	st. Taxes:	\$	-
Chemicals	Used													aily Cost:	\$	-
Daily Cost		<u> </u>	<u> </u>				<u> </u>			<u> </u>		Est	. Cumula	tive Cost:	\$	-
	TECHNIC	AL REP:	F	Ryan Brool	ks	WAR	EHOUSE		13027	7 CR 18			NAME:			
(CELL PH	ONE NO.	3	03-720-47	75	Α	DDRESS:	F		n, CO 806	21		PHONE:			
	4410 0	EDVIOE.							(202)	NET 4474	_		DUONE.		_	_

ANS. SERVICE:

DRILLING MUD REPORT 12 **Measured Depth** T.V. Depth 08/31/23 1328 ft 1,309 ft. **Spud Date Present Activity** Rig No.

Phone: 303-857-7540 Version 3.75 08/24/23 10031 Working to bottom OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: **VOLUMES** PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 26 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE 2 Size Ft Jets (32nd) Size set @ 396 bbls 0.00 G/ST 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 422 bbls **BPM** SURF. TO BIT **Drill Pipe** 6.875 4.5 1129 Total Cir Vol Total GPM Total BPM TOT. CIR TIME H.W. Drill Pipe 772 bbls ✓ Flowline Pit Calculate Alkalinity Check **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X 07:15 Horsepower ime Sample Taken 1309 Impact Force epth (ft) Mud Weight 8.7 Press Loss at Bit Mud Gradient (psi/ft) 0.4524 Press Loss at Bit Funnel Viscosity @ **32 Recommended Equipment** 5 Plastic Visc.cp @ 75 Desander Gel Strength (lb/100ft2) 0 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 0 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 8.8 API HTHP (cm3/30 min) X RECOMMENDED TOURLY TREATMENT Cake Thickness (/32nds) 1 Mud looks good at this time, no treatment needed 97.2 Water Content (% by Vol.) and Content (% by vol) .25 Bentonite Content (lb/bbl) 7.0 Strip Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 10/.35 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis Crews did a bit trip yesterday ..G. Solids H.G. Solids H.G. Solids ..G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 PEL NW-BLEAC SUPER SODA PLATINUM HOLE CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 172 Starting Inventory 32 68 31 31 32 240 144 144 hemicals Received 172 32 30 31 144 68 32 240 144 Closing Inventory Chemicals Used 0 0 0 1 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE:

> AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

(303) 857-4171

PHONE:

PHONE:

Hydro R 13027 C	ounty R	d 18				4	Нν	/dı	ro	Da	ate	1	G MUD REPORT	T.V. Dep	
FT Lupto	-							resou	ırces	08/3	1/23		1,434 ft.		34 ft
Phone: 3	303-857	-7540									Date	Pre	esent Activity	Rig	No.
Version 3.7	75									08/2	4/23		Drilling	100	031
OPERATO	OR:		Cit	ty of Rio R	ancho		CONTR			Hydro Re					
Operator'							Contrac		oresenta	tive:	Ty Curti		Ta		
_	Name &		Field:				County,		In		Sand	oval	State:		/lexico
	Ranco		Legal:			IDI V		JMES		NFORMA		ID #0		AULICS	T \/
BIT D Bit Size	17.5	Size	30	set @	80 ASSEN	Ft Ft	Pit Vol.	350	PUI	MP #1	PUIV	IP #2	ANNULAR Drill Dina	VELOCI	I Y
	Milltooth	Size	30	set @	80	Ft		apacity obls		V		v	Drill Pipe Drill Collar		
Bit Type Bit No.	2	Size		set @		Ft		olume	0	SPM	0	x SPM	CIRCULATIN	C DDESS	SLIDE
Jets (3		Size		set @		Ft		bbls		G/ST	0.00	SFIVI	CIRCULATIN	G FIXESC	JUIL
0613 (0)ZIIU)		ill Collar	11	4.5	180		olume/	0.00	GPM	0.00		BOT. UP		
			ill Collar	- ' '	4.0	100		bbls		BPM			SURF. TO BIT		
			Drill Pipe	6.875	4.5	1254		Cir Vol	Tota	al GPM	Total	BPM	TOT. CIR TIME		
			Orill Pipe					bbls	. 0.0		. 0.01				
Sample Fro	✓ FIG		Pit	Mu	d Proper	ties		e Alkalir	nity	Check			HYDRAULICS		
Flowline Te					X				Ī		Jet V	elocity		Nozzl	e Area
Time Samp					18:00							power			
Depth (ft)					1434							t Force			
Mud Weigh	nt (ppg)				8.8						Press Lo	ss at Bit			
Mud Gradie	ent (psi/ft))			0.4576						Press Lo	ss at Bit			
Funnel Visc	cosity @		°F		32				•	Reco	mmende	ed Equip	ment		
Plastic Viso	c.cp @	75	°F		5		Cntrfuge		Shaker	y	Desander				
Yield Point	(lb/100ft2)			5		Degasser		Desilter		Other				
Gel Strengt					0					Recom	mended	Mud Pro	perties		
Gel Strengt			nin		1		By Au	thority of:	V	Company F	Representa	ative	Drilling Contra	ctor	
Gel Strengt			nin		X			l Wt:	8.4-9.0	Filtr	ate:	10-12cc	Viscosity:	31-34	
		3/30 min)			9.6		LC	M:					Excess Lime:		lb/bbl
	API HTHP		min)		X								REATMENT		
Cake Thick					1		evening	shift add	1 sx of F	Platinum P	ac UL ove	er shift			
Solids Con		by vol)			3.5										
Water Cont Sand Cont	<u> </u>	% by Vol.) % by vol)			96.5 .50										
Bentonite (.30 X		1								
pH 🗸	Strip		/leter		7.0										
Alkalinity M					X										
Alkalinity,					.10/.35										
Chloride (r					140										
Total Hardr			g/l)		40										
Oil Content		vol)		1	X										
	bbl)			1	X										
Excess Lim	ne (lb/bbl)			X						DAILY R	EMARKS			
		-	alida Ama	alvaia			1				DAILT R	EWAKKS			
	T		olids Ana		I	0/	1								
L.G. Solids L.G. Solids		%		H.G. Solids H.G. Solids		% ppb									
	ted Solids	ppb	%		ge Sp. Gr.	ррь	1								
	IEMICALS	SUPER GEL X	SODA ASH	PLATINUM PAC UL		FLOPAM	DF202 0	HOLE PLUG	PEL PLUG	PEL PLUG 60	NW- 220	BLEAC H			
Starting	Inventory	172	32	68	30	31	32	240	30 144	144	 				
Chemicals		112	52	- 55	30	31	52	240	1 74	174	<u> </u>				
	Inventory	172	32	68	30	31	32	240	144	144					1
Ţ.	cals Used	0	0	0	0	0	0	0	0	0	1				
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0					
Снемі	CALS														
Starting Inv	entory	I		I	1		1		I		l			<u> </u>	· <u></u>

IN CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

13027 CR 18

Ft. Lupton, CO 80621

(303) 857-4171

WAREHOUSE

ADDRESS:

PHONE:

Chemicals Received

TECHNICAL REP:

CELL PHONE NO.

ANS. SERVICE:

Closing Inventory

Chemicals Used Daily Cost Est. Drayage:

Est. Daily Cost:

Est. Cumulative Cost:

NAME:

PHONE:

PHONE:

Est. Taxes:

\$

DRILLING MUD REPORT 14

Date Measured Depth T.V. Depth
09/01/23 1,686 ft. 1686 ft

Spud Date Present Activity Rig No.
08/24/23 Drilling 10031

Phone: 303-857-7540 Version 3.75 08/24/23 Drilling 10031 OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: VOLUMES PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 33 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE 2 Size Ft 0.00 G/ST Jets (32nd) Size set @ 502 bbls 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 535 bbls BPM SURF. TO BIT **Drill Pipe** 6.875 4.5 1506 Total Cir Vol Total GPM Total BPM TOT. CIR TIME H.W. Drill Pipe 885 hbls ✓ Flowline Pit Calculate Alkalinity **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X ime Sample Taken 16:00 Horsepower 1686 Impact Force epth (ft) Mud Weight 8.9 Press Loss at Bit Mud Gradient (psi/ft) 0.4628 Press Loss at Bit Funnel Viscosity @ 31 **Recommended Equipment** Plastic Visc.cp @ 75 5 Desander Gel Strength (lb/100ft2) 0 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 1 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 9.6 I CM RECOMMENDED TOURLY TREATMENT API HTHP (cm3/30 min) X Cake Thickness (/32nds) 1 (% by vol) 95.7 Water Content (% by Vol.) and Content (% by vol) .50 Bentonite Content (lb/bbl) 7.0 Strip Meter Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 10/.35 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis ..G. Solids H.G. Solids ..G. Solids H.G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 HOLE PEL NW-BLEAC SUPER SODA PLATINUM CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 172 Starting Inventory 32 68 30 31 32 240 144 144 hemicals Received 172 32 30 31 144 66 32 240 144 Closing Inventory Chemicals Used 0 0 2 0 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes: Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE: ANS. SERVICE: PHONE: (303) 857-4171 PHONE:

IN CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS

AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

Phone: 303-857-7540 Version 3.75 08/24/23 Drilling 10031 OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: **VOLUMES** PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 35 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE 2 Size Ft 0.00 G/ST Jets (32nd) Size set @ 526 bbls 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 561 bbls BPM SURF. TO BIT **Drill Pipe** 6.875 4.5 1589 Total Cir Vol Total GPM Total BPM TOT. CIR TIME H.W. Drill Pipe 911 bbls ✓ Flowline Pit Calculate Alkalinity Check **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X ime Sample Taken 07:00 Horsepower Impact Force epth (ft) 1769 Mud Weight 8.9 Press Loss at Bit Mud Gradient (psi/ft) 0.4628 Press Loss at Bit Funnel Viscosity @ **30 Recommended Equipment** Plastic Visc.cp @ 75 5 Desander Gel Strength (lb/100ft2) 0 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 1 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 8.8 RECOMMENDED TOURLY TREATMENT API HTHP (cm3/30 min) X Cake Thickness (/32nds) 1 (% by vol) 95.7 Water Content (% by Vol.) and Content (% by vol) .50 Bentonite Content (lb/bbl) 7.0 Strip Meter Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 10/.35 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis ..G. Solids H.G. Solids H.G. Solids ..G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 HOLE PEL NW-BLEAC SUPER SODA PLATINUM CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 172 Starting Inventory 32 66 30 31 32 240 144 144 hemicals Received 172 32 30 31 144 66 32 240 144 Closing Inventory Chemicals Used 0 0 0 0 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE: ANS. SERVICE: PHONE: (303) 857-4171 PHONE:

N CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS

AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

Phone: 303-857-7540 Version 3.75 08/24/23 Drilling 10031 OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: **VOLUMES** PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 37 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE 2 Size Ft 0.00 G/ST Jets (32nd) Size set @ 563 bbls 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 600 bbls BPM SURF. TO BIT **Drill Pipe** 6.875 4.5 1721 Total Cir Vol Total GPM Total BPM TOT. CIR TIME H.W. Drill Pipe 950 bbls ✓ Flowline Pit Calculate Alkalinity **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X ime Sample Taken 07:00 Horsepower 1901 Impact Force epth (ft) Mud Weight 8.9 Press Loss at Bit Mud Gradient (psi/ft) 0.4628 Press Loss at Bit Funnel Viscosity @ **30 Recommended Equipment** Plastic Visc.cp @ 75 5 Desander Gel Strength (lb/100ft2) 0 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 1 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 8.8 RECOMMENDED TOURLY TREATMENT API HTHP (cm3/30 min) X Cake Thickness (/32nds) 1 Please add 2 sx of Platinum Pac UL over shift. (% by vol) 95.7 Water Content (% by Vol.) and Content (% by vol) .25 Bentonite Content (lb/bbl) 7.0 Strip Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 10/.35 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis ..G. Solids H.G. Solids H.G. Solids ..G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 HOLE PEL NW-BLEAC SUPER SODA PLATINUM CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 172 Starting Inventory 32 66 30 31 32 240 144 144 hemicals Received 172 32 30 31 144 63 32 240 144 Closing Inventory Chemicals Used 0 0 3 0 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes: Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE: ANS. SERVICE: PHONE: (303) 857-4171 PHONE:

IN CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS

AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

Hydro Resources
13027 County Rd 18
FT Lupton, CO 80621
Phone: 303-857-7540
Version 3.75
OPERATOR: City of Rio Rancho

Version 3.7	5									08/2	4/23		Drilling		100	031		
OPERATOR: Operator's Representative:				y of Rio R	ancho		CONTR	ACTOR:		Hydro Re	esources	•		<u>'</u>				
Operator's	s Repres	sentative	:				Contrac	tor's Re	oresenta	tive:	Ty Curti	s						
Well	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	lexico		
Rio	Ranco 9)A	Legal:				VOL	JMES	PUMP II	NFORMA	TION			HYDRA	AULICS			
BIT D	ATA	C		DRILLING	ASSEN	IBLY	Pit Vol.	350	PUN	MP #1	PUM	IP #2	Α	NNULAR	VELOCI	ΤΥ		
Bit Size	17.5	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe				
	Milltooth			set @		Ft		bbls		Х	,	X		Collar				
Bit No.	2	Size		set @		Ft		olume	0	SPM	0	SPM		CULATING	3 PRESS	LIRE		
Jets (3		Size		set @		Ft		bbls		G/ST	0.00	01 111	On the	002/11111	0 1 11 <u>2</u> 00	OTTE		
0013 (0	2110)		ill Collar	11	4.5	180		/olume	0.00	GPM	0.00		POT	Γ. UP				
				- 11	4.5	100		bbls		BPM				TO BIT				
			ill Collar Drill Pipe	C 07E	4.5	1796		Cir Vol	Tota	I GPM	Total	DDM		IR TIME				
				6.875	4.5	1790			Tota	II GPIVI	Total	DPIVI	101.0	IK HIVIE				
			orill Pipe					bbls							11.100			
Sample Fro			Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR.	AULICS				
Flowline Ter	mperature	e (°F)			X						Jet Ve	elocity			Nozzle	e Area		
Time Samp	le Taken				15:30						Horse	epower						
Depth (ft)					1976						Impact	Force						
Mud Weigh	t (ppg)				8.8						Press Lo	ss at Bit						
Mud Gradie	nt (psi/ft))			0.4576						Press Lo	ss at Bit						
Funnel Visc		<u> </u>	°F		30					Reco	mmende		ment					
Plastic Visc		75	°F		5		Cntrfuge		Shaker	√	Desander							
Yield Point			<u> </u>		5				Desilter		Other							
Gel Strengt	•	•	00		0		Degasser		Desilter	Pocom	mended	Mud Pro	nortice					
Gel Strengt							D A.	alle a alternation	<u> </u>					! Ot	-1			
_					1		-	thority of:		Company F				ing Contractoring Contractoring	31-34	1		
Gel Strengt			iin		X			l Wt:	8.4-9.0	Filtr	ate:	10-14cc						
	•	3/30 min)			10.6		LC	CM:						s Lime:		lb/bbl		
					X					RECOMME								
Cake Thick	ness (/	/32nds)			1		add 2sx	of platinu	m pac ul	, at td circ	ulate cutti	ngs out a	and then	change o	ut screens	S		
Solids Cont		by vol)			3.5		to help c	lean fine	s out.									
Water Cont		6 by Vol.)			96.5													
Sand Conte	ent (9	% by vol)			.25													
Bentonite C	ontent (lb/bbl)			X													
pH ✓	Strip	l N	/leter		7.0													
Alkalinity M	ud (Pm)	cm3 N/50) Acid		X													
Alkalinity, F	Pf / Mf				.10/35													
Chloride (m	ng/l)				140													
Total Hardn	ess as Ca	alcium (m	g/l)		40													
Oil Content	(% by	vol)			X													
LCM (lb/b	obl)				X													
Excess Lim	e (lb/bbl)			X													
							DAILY REMARKS											
		Se	olids Ana	llysis														
L.G. Solids		%		H.G. Solids		%												
L.G. Solids		ppb		H.G. Solids		ppb												
	ed Solids		%		je Sp. Gr.	PPD												
33,1000				-					PEL			I_						
Сн	EMICALS	SUPER	SODA	PLATINUM		FLOPAM	DF202	HOLE	PLUG	PEL	NW-	BLEAC						
		GEL X	ASH	Pac UL	им Рас		0	PLUG	30	PLUG 60	220	Н						
Starting I	Inventory	172	32	63	30	31	32	240	144	144								
Chemicals I	Received																	
Closing I	Inventory	172	32	62	30	31	32	240	144	144								
Chemic	als Used	0	0	1	0	0	0	0	0	0								
D	aily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0								
Снеміс	CALS																	
Starting Inv												<u>!</u>	<u> </u>	<u> </u>				
Chemicals I													Est	Drayage:				
Closing Inve														st. Taxes:	\$			
Chemicals I														aily Cost:	\$			
Daily Cost	- Joeu											Est		tive Cost:	\$	_		
Daily OUSE		<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	LSI	. Jamuia	0031.	*			
TECHNICAL REP: Ryan Brooks						1000	FUCUSE		4000	7 OD 40			N144					
				•			EHOUSE			7 CR 18	24	-	NAME:	.				
(CELL PH	ONE NO.	 3	03-720-47	C	A	DDRESS:	F		n, CO 806	2 1	<u> </u>	PHONE:	.				

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.	
Version 3.75										08/2	4/23		Reamin	g	100	031	
OPERATO	DR:		Cit	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources						
Operator's		sentative		ly or raio ra	unono			tor's Re		_	Ty Curti						
	Name &		Field:				County,		or cocrita	T .	Sand			State:	New N	/lexico	
	Ranco 9		Legal:				VOL		PIIMPII	NFORMA [*]		o ru.		HYDRA			
BIT D				DRILLING	ASSEM	IRI V	Pit Vol.	350		MP #1	PUM	D #2	Λ	NNULAR		TV	
	28	Size	30	set @	80	Ft		apacity	1 01	VII # I	1 OW	1 πΖ		Pipe	VLLOCI		
	Milltooth		30	set @	00	Ft		bls		· ·				Collar			
						Ft Ft			0	X	0	X CDM			NG PRESSURE		
Bit No.	3	Size		set @				olume		SPM	-	SPM	CIRC	JULATING	J PRESS	OURE	
Jets (3	2na)	Size		set @		Ft		bbls	0.00	G/ST	0.00		50				
			ill Collar	11	4.5	180		/olume		GPM				Γ. UP			
			ill Collar					bbls		BPM				TO BIT			
			Orill Pipe	6.875	4.5	175		Cir Vol	I ota	I GPM	Total	ВРМ	101.0	IR TIME			
			Prill Pipe					bbls									
Sample Fro			Pit	Mu	d Proper	ties	Calculat	e Alkalir	ity 🗀	Check			HYDR	AULICS			
Flowline Te	mperature	e (°F)			X						Jet Ve	elocity			Nozzl	e Area	
Time Samp	le Taken				07:10						Horse	power					
Depth (ft)					355						Impact	Force					
Mud Weigh	t (ppg)				8.6						Press Lo	ss at Bit	•				
Mud Gradie	ent (psi/ft))			0.4472						Press Lo	ss at Bit					
Funnel Visc	cosity @		°F		31					Reco	mmende	ded Equipment					
Plastic Visc		75	°F		10		Cntrfuge		Shaker	J	Desander	П					
Yield Point					5		Degasser	Ħ	Desilter		Other						
Gel Strengt	•	•	ec		0		g			Recom		Mud Properties					
Gel Strengt					1		Bv Au	thority of:		Company F			Drilling Contractor				
Gel Strengt			nin		X			l Wt:	8.4-9.0	Filtr		10-14cc		osity:	31-34		
		3/30 min)			10.4			CM:	0.10.0	1 110	ato.	10 1100		s Lime:	0101	lb/bbl	
	Filtrate API HTHP (cm3/30 min)				X					RECOMME	NDED TO	URI Y TR					
· · · · · · · · · · · · · · · · · · ·			,		1		If fresh v	vater is a		ase add 1				•			
	Cake Thickness (/32nds) Solids Content (% by vol)				2.0		II II CSII V	vater is a	adea piec	asc add 1	3X 01 1 14t	indin a	JOL				
Water Cont		6 by Vol.)			98.0												
Sand Conte		% by vol)			.25												
Bentonite C	•				X												
pH 🗸	Strip		/leter		8												
Alkalinity M					x												
Alkalinity, F			7 1010		.25/.50												
Chloride (m					140												
Total Hardn		alcium (m	a/l)		40												
Oil Content			J- /		X												
LCM (lb/k					X												
Excess Lim)			X												
	•	,					DAILY REMARKS										
		S	olids Ana	lvsis													
L.G. Solids		%	1	H.G. Solids		%											
L.G. Solids		ppb		H.G. Solids		ppb											
	ed Solids	FF	%		ge Sp. Gr.	FF-											
		C1:					DECCC	I I e · ·	PEL	D=:	N 13 8 7	D					
Сн	EMICALS	SUPER GEL X	SODA ASH	PLATINUM PAC UL	PLATIN UM PAC	FLOPAM	DF202 0	HOLE PLUG	PLUG	PEL PLUG 60	NW- 220	BLEAC H					
									30		220	""					
Starting	•	172	32	62	30	31	32	240	144	144							
Chemicals I																-	
	Inventory	130	30	60	30	31	32	240									
	als Used	42	2	2	0	0	0	0								<u> </u>	
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0									
		T	Т	1	T		T	T	1	T	1	ı	1	1 .			
Снеміс			ļ]					
Starting Inv			ļ				ļ										
Chemicals I			ļ											Drayage:			
Closing Inve	•		ļ											st. Taxes:	\$	-	
Chemicals I	Used													aily Cost:	\$	-	
Daily Cost			<u> </u>									Est	. Cumula	tive Cost:	\$	-	
TECHNICAL REP:							EHOUSE			7 CR 18			NAME:				
CELL PHONE NO.				303-720-4775 ADD				F		n, CO 806	21		PHONE:				

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621 Phone: 303-857-7540

DRILLING MUD REPORT 19

Date Measured Depth T.V. Depth 10/25/23 441 ft. 441 ft

Spud Date Present Activity Rig No. 10031

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.			
Version 3.7	5									08/2	4/23		Reaming	g	100	031			
OPERATO	R:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	esources			-					
Operator's	s Repres	sentativ	e:				Contrac	tor's Re	resenta	tive:	Ty Curti	s							
Well	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	lexico			
Rio	Ranco 9)A	Legal:				VOLU	JMES	PUMP I	NFORMA [*]	TION			HYDRA	ULICS				
BIT D	ATA	C		DRILLING	S ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUN	IP #2	Α	NNULAR	VELOCI	ΤΥ			
	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe					
	Milltooth			set @		Ft		bls		Х		X		Collar					
Bit No.	3	Size		set @		Ft		olume	0	SPM	0	SPM		CULATING	PRESS	LIRE			
Jets (3		Size		set @		Ft		bbls		G/ST	0.00	OI W	Onto	30L/ (TII (71 KE00	OILE			
0613 (3	ZIIU)		ill Collar	11	4.5	180		/olume	0.00	GPM	0.00		POT	Γ. UP					
				11	4.5	100													
			ill Collar	C 075	4.5	004	_	bbls	Tota	BPM	Total	DDM		TO BIT					
			Orill Pipe		4.5	261		Cir Vol	Tota	I GPM	Total	BPIVI	101.0	IR TIME					
			Orill Pipe					bbls											
Sample Fro			Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS					
Flowline Ter	mperature	e (°F)			X						Jet Ve	elocity			Nozzle	e Area			
Time Samp	le Taken				17:00						Horse	power							
Depth (ft)					441						Impac	Force							
Mud Weight	t (ppg)				8.7						Press Lo	ss at Bit							
Mud Gradie)			0.4524						Press Lo	ss at Bit							
Funnel Visc			°F		30				•	Reco			ment						
Plastic Visc		75	°F		5		Cntrfuge		Shaker	7	Recommended Equipment								
	Id Point (lb/100ft2) 0																		
	el Strength (lb/100ft2) 10-sec 0							Desilter Other Recommended Mud Properties											
	Strength (lb/100ft2) 10-sec 0 Strength (lb/100ft²) 10-min 0							uthority of:	J	Company F			•	ing Contrac	rtor				
								d Wt:	8.4-9.0	Filtr	•	10-14cc		_	31-34	1			
	rength (lb/100ft²) 30-min x e API (cm3/30 min) 11.2							CM:	6.4-9.0	FIIU	ale.	10-1400		osity: s Lime:	31-34	lb/bbl			
	, ,						LC	JIVI.		DECOMME	NDED TO	LIDLY TO				ID/DDI			
		•	min)		X		N 1 1 4 1 1			RECOMME		URLY IR	EAIMEN	I I					
Cake Thick	•	/32nds)			1		Night sh	ift please	add 2 sx	of Platinu	ım Pac								
Solids Cont		by vol)			2.8														
Water Cont		6 by Vol.)			97.2														
Sand Conte		% by vol)			.25														
Bentonite C			_		X														
pH 🗸	Strip		/leter		8.0														
Alkalinity M		cm3 N/50	O Acid		X														
Alkalinity, F					.30/.55														
Chloride (m					140														
Total Hardn		•	ıg/l)		40														
Oil Content		vol)			X														
LCM (lb/k					X														
Excess Lim	e (lb/bbl)			X														
											DAILY R	EMARKS							
		S	olids Ana	alysis															
L.G. Solids		%		H.G. Solids		%													
L.G. Solids		ppb		H.G. Solids		ppb													
Correcte	ed Solids		%	Averaç	ge Sp. Gr.														
		SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC							
Сні	EMICALS	GEL X	ASH	PAC UL	UM PAC	FLOPAM	0	PLUG	PLUG	PLUG 60	220	H							
0		400						2.12	30										
Starting I		130	30	60	30	31	32	240								-			
Chemicals I		400																	
	Inventory	130	30	60	30	31	32	240											
	als Used	0	0	0	0	0	0	0								1			
D	aily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0											
		ī		T	1	T	1	1	ī	1	1			,					
Снеміс																			
Starting Inv	entory																		
Chemicals F	Received													Drayage:					
Closing Inve	entory												E	st. Taxes:	\$	-			
Chemicals l	Used													aily Cost:	\$	-			
Daily Cost												Est	. Cumula	tive Cost:	\$	-			
TECHNICAL REP: Ryan					ks	WAR	AREHOUSE 13027 CR 18 NAME:												
(CELL PH	ONE NO.		•		Α	DDRESS:	F		n, CO 806	21		PHONE:						
		FRVICE:						PHONE: (303) 857-4171					PHONE:						

Phone: 303-857-7540 Version 3.75 08/24/23 10031 Reaming OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: **VOLUMES** PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 11 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE 3 Size Ft Jets (32nd) Size set @ 423 bbls 0.00 G/ST 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 434 bbls BPM SURF. TO BIT **Drill Pipe** 6.875 4.5 Total Cir Vol Total GPM Total BPM TOT. CIR TIME 371 H.W. Drill Pipe 784 bbls ✓ Flowline Pit Calculate Alkalinity **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X ime Sample Taken 08:30 Horsepower Impact Force epth (ft) 551 Mud Weight 8.8 Press Loss at Bit Mud Gradient (psi/ft) 0.4576 Press Loss at Bit Funnel Viscosity @ 31 **Recommended Equipment** 10 Plastic Visc.cp @ 75 Desander Gel Strength (lb/100ft2) 0 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 1 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 12.0 RECOMMENDED TOURLY TREATMENT API HTHP (cm3/30 min) X Cake Thickness (/32nds) 1 continue to add open sx of Platinum Pac 3.5 (% by vol) 96.5 Water Content (% by Vol.) and Content (% by vol) .25 Bentonite Content (lb/bbl) 8.0 Strip Meter Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 30/.50 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis ..G. Solids H.G. Solids H.G. Solids ..G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 HOLE PEL NW-BLEAC SUPER SODA PLATINUM CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 32 Starting Inventory 130 30 60 30 31 240 hemicals Received 130 30 30 31 60 32 240 Closing Inventory Chemicals Used 0 0 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE: ANS. SERVICE: PHONE: (303) 857-4171 PHONE:

N CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS

AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

ANS. SERVICE:

DRILLING MUD REPORT 21 **Measured Depth** T.V. Depth 10/26/23 615 ft. 615 ft **Spud Date Present Activity** Rig No.

Phone: 303-857-7540 Version 3.75 08/24/23 10031 Reaming OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: **VOLUMES** PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 12 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE 3 Size Ft Jets (32nd) Size set @ 474 bbls 0.00 G/ST 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 486 bbls BPM SURF. TO BIT **Drill Pipe** 6.875 4.5 435 Total Cir Vol Total GPM Total BPM TOT. CIR TIME H.W. Drill Pipe 836 bbls ✓ Flowline Pit Calculate Alkalinity **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X ime Sample Taken 16:30 Horsepower 615 Impact Force epth (ft) Mud Weight 8.8 Press Loss at Bit Mud Gradient (psi/ft) 0.4576 Press Loss at Bit Funnel Viscosity @ **32 Recommended Equipment** 10 Plastic Visc.cp @ 75 Desander Gel Strength (lb/100ft2) 0 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 1 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 12.0 RECOMMENDED TOURLY TREATMENT API HTHP (cm3/30 min) X Cake Thickness (/32nds) 1 Please add 1 sx of Platinum Pac 3.5 (% by vol) 96.5 Water Content (% by Vol.) and Content (% by vol) .25 Bentonite Content (lb/bbl) 8.0 Strip Meter Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 25/.45 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis ..G. Solids H.G. Solids H.G. Solids ..G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 HOLE PEL NW-BLEAC SUPER SODA PLATINUM CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 32 Starting Inventory 130 30 60 30 31 240 hemicals Received 130 30 30 31 60 32 240 Closing Inventory Chemicals Used 0 0 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE:

AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

(303) 857-4171

PHONE:

PHONE:

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.			
Version 3.75										08/2	4/23		Reamin	q	10	031			
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources								
Operator'		l sentative		ly or release	unono			tor's Re		_	Ty Curti								
	Name &		Field:				County,		or cocrita	T	Sand			State:	New N	/lexico			
	Ranco 9		Legal:					JMES	DIIMDII	NFORMA [*]		- Tui			AULICS	ICAIOO			
BIT D				L R DRILLING	ASSEM	IRI V	Pit Vol.	350		MP #1		IP #2	Δ	NNULAR		TV			
Bit Size	28	Size	30	set @	80	Ft		apacity	1 01	VII π I	I OW	πΖ		Pipe	VLLOCI				
	Milltooth		30	set @	00	Ft		bbls		· ·		· ·		Collar					
						Ft Ft			0	X	0	X CDM			C DDECC	NUDE			
Bit No.	3	Size		set @				olume		SPM	_	SPM	CIRC	CULATING	J PRESS	OURE			
Jets (3	s2na)	Size		set @		Ft		bbls	0.00	G/ST	0.00		5.00						
		a e	ill Collar		4.5	180		/olume		GPM				Γ. UP					
			ill Collar					bbls		BPM				TO BIT					
		a e	Orill Pipe		4.5	572		Cir Vol	I ota	I GPM	Total	BPM	101.0	IR TIME					
			Prill Pipe					bbls											
Sample Fro			Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS					
Flowline Te	mperature	e (°F)			X						Jet Ve	elocity			Nozzl	e Area			
Time Samp	le Taken				08:00						Horse	power							
Depth (ft)					752						Impact	Force							
Mud Weigh	t (ppg)				8.8						Press Lo	ss at Bit	-						
Mud Gradie	ent (psi/ft))			0.4576						Press Lo	Loss at Bit							
Funnel Visc	cosity @		°F		31					Reco	mmende	ded Equipment							
Plastic Visc		75	°F		5		Cntrfuge		Shaker	J	Desander	П							
Yield Point					0		Degasser		Desilter		Other	Н							
Gel Strengt	•		ec		0		g			Recom		Mud Pro	perties						
Gel Strengt					0		Bv Au	uthority of:		Company F		Mud Properties ative Drilling Contractor							
Gel Strengt					x			d Wt:	8.4-9.0	Filtr		10-14cc		cosity:	31-34				
		3/30 min)			11.2			CM:	0.10.0	1 110	ato.	10 1100		s Lime:	0101	lb/bbl			
	Filtrate API HTHP (cm3/30 min)				x			,,,,,		RECOMME	NDED TO	TOURLY TREATMENT							
			111111)		1		۸ dd 2 cy	of Platin		slowly ove			CATIVILI	· ·					
Cake Thickness (/32nds) Solids Content (% by vol)					3.5		Auu 2 SA	OFIAIII	umracs	Slowly ove	1 1651 01 5	mt							
Water Cont		6 by Vol.)			96.5														
Sand Cont		% by vol.) % by vol)			.25														
Bentonite C	•				. <u>.25</u>														
pH 🗸	Strip		/leter		8.0														
Alkalinity M					X														
Alkalinity, I		CITIO 14/OC	Acid		.30/.50														
Chloride (n					140														
Total Hardr		alcium (m	a/l)		40														
Oil Content			9/1/		X														
LCM (lb/		VO. /			X														
Excess Lim)			X														
2,0000 2	(15/55)	,					DAILY REMARKS												
		9	olids Ana	alveie															
L.G. Solids	ı	%	l and	H.G. Solids		%													
L.G. Solids		ppb		H.G. Solids		ppb													
	ed Solids		%		ge Sp. Gr.	ρρυ													
COLLECT	ou oulus							1	PEL	I	1	I	l			T			
Сн	EMICALS	SUPER		PLATINUM	PLATIN	FLOPAM	DF202	HOLE	PLUG	PEL	NW-	BLEAC			I				
		GEL X	ASH	Pac UL	им Рас		0	PLUG	30	PLUG 60	220	Н			<u> </u>	1			
Starting	Inventory	130	30	60	30	31	32	240											
Chemicals	Received														<u> </u>				
Closing	Inventory	130	30	60	30	31	32	240											
	cals Used		0	0	0	0	0	0							 				
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0											
Снемі	CALS																		
Starting Inv	entory																		
Chemicals	Received												Est.	Drayage:					
Closing Inv	entory												E	st. Taxes:	\$	-			
Chemicals	Used												Est. Da	aily Cost:	\$	-			
Daily Cost												Est	. Cumula	tive Cost:	\$	-			
TECHNICAL REP:				Ryan Brooks WA			WAREHOUSE 13027 CR 18 NAME:												
TECHNICAL REP: CELL PHONE NO.			3	303-720-47	75	Α	DDRESS:	F		n, CO 806	21		PHONE:						
	4410 0	EDVIOE-			DUONE		(202) 0	NET 4474			DUONE								

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621 Phone: 303-857-7540

Pnone: 3	3U3-857	-7540								,	Spua	Date	Pre	esent Act	ivity	Rig	NO.
Version 3.7	' 5									08/24/23		4/23		Drilling		10031	
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hyd	ro Re	sources					
Operator's	s Repres	sentative		ĺ			Contrac	tor's Re	oresenta	tive:		Ty Curti	S				
	Name &		Field:				County,					Sand			State:	New N	/lexico
Rio	Ranco 9)A	Legal:					JMES	PUMP I	NFOI	RMA	TION			HYDRA	ULICS	
BIT D				DRILLING	ASSEN	IBLY	Pit Vol.	350		MP #		PUM	P #2	Α	NNULAR		TY
Bit Size	28	Size	30	set @	80	Ft		apacity							Pipe		
	Milltooth			set @		Ft		bbls		Х		,	X		Collar		
Bit No.	3	Size		set @		Ft		olume	0	SPN	1	0	SPM		CULATING	3 PRESS	SURF
Jets (3		Size		set @		Ft		bbls	0.00			0.00	<u> </u>	Onto	JOE 11111	3 1 1 L C C	JOINE
0000 (0	<u> </u>		ill Collar	11	4.5	180		/olume	0.00	GPM		0.00		BOI	T. UP		
			ill Collar	- ' '	4.0	100		bbls		BPM					SURF. TO BIT		
		4	Drill Pipe	6.875	4.5	655		Cir Vol	Tota	I GPI		Total	RDM		IR TIME		
			Orill Pipe		4.5	033		bbls	Tota	I GFI	VI	Total	DEIVI	101.0	IIX TIIVIL		
	 		Pit		d Dansac	41			14.	Oh				HVDD	A I II 100		
Sample Fro			_Pit	Mu	d Prope	rties	Calculat	e Alkalir	ііту 🗀	Ch	eck			HYDR	AULICS		
Flowline Te	•	e (°F)			X							Jet Ve		T		Nozzl	e Area
Time Samp	le Taken				16:30							Horse					
Depth (ft)					835							Impact					
Mud Weigh					8.9					<u> </u>		Press Lo					
Mud Gradie)	10		0.4628							Press Lo	ss at Bit				
Funnel Visc	•		°F		31						Reco	mmende	d Equip	ment			
Plastic Visc	.ср @	75	°F		5		Cntrfuge		Shaker	√		Desander					
Yield Point	(lb/100ft2)			0		Degasser		Desilter			Other					
Gel Strengt			ec		0					Re	com	mended	Mud Pro	perties			
Gel Strengt	h (lb/100f	t ²) 10-m	nin		0		By Au	thority of:	y	Comp	any F	Representa	ıtive	Drill	ing Contra	ctor	
Gel Strengt	h (lb/100f	t²) 30-m	nin		X		Muc	d Wt:	8.4-9.0		Filtr	ate:	10-14cc	Visc	osity:	31-34	
Filtrate A	API (cm	3/30 min)			12		LC	CM:						Exces	s Lime:		lb/bbl
Filtrate A	API HTHP	cm3/30	min)		X					RECO	ОММЕ	NDED TO	URLY TE	REATMEN	T		
Cake Thick	ness (/32nds)			1		Evening	shift plea	se add 2	2 sx o	f Plat	inum pac					
Solids Cont		by vol)			4.3		·										
Water Cont	ent (%	6 by Vol.)			95.7												
Sand Cont	ent (9	% by vol)			.50												
Bentonite C	Content (lb/bbl)			X												
pH 🗸	Strip	<u> </u>	/leter		8.0												
Alkalinity M	ud (Pm)	cm3 N/50	O Acid		X												
Alkalinity, F	Pf / Mf				.30/.55												
Chloride (n	ng/l)				140												
Total Hardn	ess as C	alcium (m	ıg/l)		60												
Oil Content	(% by	vol)			X												
LCM (lb/l	bbl)				X												
Excess Lim	e (lb/bbl)			X												
							DAILY REMARKS										
		S	olids Ana	alysis													
L.G. Solids		%		H.G. Solids		%											
L.G. Solids		ppb		H.G. Solids		ppb											
Correct	ed Solids		%	Averag	je Sp. Gr.												
		SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	Pi	EL	NW-	BLEAC				
Сн	EMICALS	GEL X	ASH	PAC UL	UM PAC	FLOPAM	0	PLUG	PLUG		g 60	220	H				
C+~	Invest	400	20	00	20	24	20		30	-							1
,	Inventory	130	30	60	30	31	32	240	 				1				1
Chemicals			00	00	00	04	00	0.40									1
	Inventory	130	30	60	30	31	32	240									1
	cals Used Daily Cost		0 \$0	0 \$0	0 \$0	0 \$0	0 \$0	0 \$0	 				1				1
L	Jany COST	φО	Φυ	Φυ	ФО	ΦU	ФО	ФО	<u> </u>	<u> </u>							<u> </u>
C:	CALC	ı	1	I		1	T .	1	ı	ı		1	I	1	1		
Снемі		ļ	ļ			ļ			ļ]	<u> </u>			
Starting Inventory									<u> </u>					_			
Chemicals Received														Drayage:	•		
Closing Inventory									<u> </u>					st. Taxes:	\$	-	
Chemicals	Used		.							<u> </u>					ily Cost:	\$	-
Daily Cost													Est	. Cumula	tive Cost:	\$	-
TECHNICAL DED Brooks																	
				Ryan Brool		4	EHOUSE		13027					NAME:			
(03-720-47	75	Α	DDRESS: PHONE:	F	t. Luptor	_		21		PHONE:			
CELL PHONE NO ANS. SERVICE:									(303) 8	357-4	171			PHONE:			

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.
Version 3.7	' 5									08/2	4/23		Reaming	g	100)31
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources			·		
Operator's	s Repres	sentativ	e:				Contrac	tor's Re	oresenta	tive:	Ty Curti	s				
Well I	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	lexico
Rio	Ranco 9)A	Legal:				VOLU	JMES	PUMP I	NFORMA [*]	TION			HYDRA	ULICS	
BIT D	ATA	C		DRILLING	ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUM	IP #2	Α	NNULAR	VELOCI	ΓΥ
	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
	Milltooth			set @		Ft		bbls		Х		X		Collar		
Bit No.	3	Size		set @		Ft	_	olume	0	SPM	0	SPM		CULATING	PRESS	URF
Jets (3		Size		set @		Ft		bbls		G/ST	0.00	OI W	Onto	30L/ (TIIV	71 KE00	ORL
0613 (3	211u)		ill Collar	11	4.5	180		/olume	0.00	GPM	0.00		POT	Γ. UP		
				11	4.5	100										
			ill Collar	C 075	4.5	750		bbls	Tota	BPM	Total	DDM		TO BIT		
			Orill Pipe		4.5	758		Cir Vol	Tota	I GPM	Total	BPIVI	101.0	IR TIME		
			Orill Pipe					3 bbls								
Sample Fro			Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS		
Flowline Te	mperature	e (°F)			X						Jet Ve	elocity			Nozzle	e Area
Time Samp	le Taken				16:30						Horse	power				
Depth (ft)					938						Impact	Force				
Mud Weigh	t (ppg)				8.9						Press Lo	ss at Bit				
Mud Gradie	ent (psi/ft))			0.4628						Press Lo	ss at Bit				
Funnel Visc			°F		32				•	Reco	mmende		ment			
Plastic Visc		75	°F		10		Cntrfuge		Shaker							
	eld Point (lb/100ft2) 5															
	Gel Strength (lb/100ft2) 10-sec 1							Degasser Desilter Other Recommended Mud Properties								
	Strength (lb/100ft2) 10-sec 1 Strength (lb/100ft²) 10-min 4							uthority of:	J	Company F		·			rtor	
								d Wt:	8.4-9.0	Filtr	•	10-14cc			31-34	1
	rength (lb/100ft²) 30-min x e API (cm3/30 min) 12.0							CM:	0.4-9.0	FIIU	ale.	10-1400		osity: s Lime:	31-34	lb/bbl
							LC	JIVI.		DECOMME	NDED TO	LIDLY TO				ID/DDI
	API HTHP	•	min)		X			1.00		RECOMME				1		
Cake Thick	•	/32nds)			1		Evening	shift plea	ise add 2	2 sx of Plat	inum Pac	: UL over	shift			
Solids Cont		by vol)			4.3											
Water Cont		6 by Vol.)			95.7											
Sand Conte		% by vol)			.25											
Bentonite C			_		X											
pH 🗸	Strip		/leter		7.5											
Alkalinity M		cm3 N/50	O Acid		X											
Alkalinity, F					.25/.50											
Chloride (m					140											
Total Hardn		•	ıg/l)		40											
Oil Content		vol)			X											
LCM (lb/k	•				X											
Excess Lim	e (lb/bbl)			X											
											DAILY R	EMARKS				
		S	olids Ana	alysis												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
Correct	ed Solids		%	Averaç	ge Sp. Gr.											
	·	SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC				
Сн	EMICALS	GEL X	ASH	PAC UL	UM PAC	FLOPAM	0	PLUG	PLUG	PLUG 60	220	H				
0		400						2.12	30							
Starting		130	30	60	30	31	32	240						 		-
Chemicals I		400														
	Inventory	130	30	60	28	31	32	240								
	als Used	0	0	0	2	0	0	0								<u> </u>
L	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0								
		ī		T		T	1	1	ī	1						
Снеміс																
Starting Inv	entory															
Chemicals I	emicals Received													Drayage:		
Closing Inve	entory												E	st. Taxes:	\$	-
Chemicals I	Used													aily Cost:	\$	-
Daily Cost												Est	. Cumula	tive Cost:	\$	-
	AL REP:	F	Ryan Broo	ks	WAR	EHOUSE		13027	13027 CR 18 NAME:							
	CELL PH	ONE NO.		•		A	DDRESS:	F		n, CO 806	21		PHONE:			
		FRVICE:		303-720-4775 ADD						357-4171			PHONE:			

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621 Phone: 303-857-7540

r none. 3		7340								Spuu			SEIIL ACI	-	Nig		
Version 3.7	5									08/2	4/23		Reamin	g	100	031	
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTRA	ACTOR:		Hydro Re	sources						
Operator's	s Repres	sentative		ĺ			Contrac	tor's Rep			Ty Curti						
	Name &		Field:				County,			1	Sand			State:	New N	/lexico	
	Ranco 9		Legal:					JMES	DIIMDI	NFORMA [*]		- · · · ·		HYDRA		ioxioo	
_				DRILLING	ACCEN	IDLV				MP #1		ID #0				TV	
BIT D							Pit Vol.	350	PUI	VIP # I	PUIV	IP #2		NNULAR	VELUCI	11	
	28	Size	30	set @	80	Ft		apacity					Drill	Pipe			
Bit Type	Milltooth	Size		set @		Ft	20	bbls		X		X	Drill	Collar			
Bit No.	3	Size		set @		Ft	Ann V	olume/	0	SPM	0	SPM	CIR	CULATING	3 PRESS	SURE	
Jets (3	(2nd)	Size		set @		Ft	795	bbls	0.00	G/ST	0.00						
00.0 (0	,		ill Collar	11	4.5	180		/olume	0.00	GPM	0.00		BO1	Γ. UP			
				- ' '	4.5	100								TO BIT			
			ill Collar	0.075		0.40		bbls		BPM	+						
			Orill Pipe		4.5	840		Cir Vol	I ota	I GPM	Total	BPM	101.0	IR TIME			
			Orill Pipe				1165	bbls									
Sample Fro	✓ Flo	owline	Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity	Check			HYDR	AULICS)		
Flowline Te	mperature	e (°F)			Х						Jet Ve	elocity			Nozzle	e Area	
Time Samp	lo Takon				07:30							power					
Depth (ft)	ie raken				1020							t Force					
Mud Weigh					8.9							ss at Bit					
Mud Gradie					0.4628						Press Lo	ss at Bit					
Funnel Visc	cosity @		°F		31					Reco	mmende	ed Equip	ment				
Plastic Visc	.cp @	75	°F		10		Cntrfuge		Shaker	7	Desander						
Yield Point)			5		Degasser		Desilter	П	Other						
Gel Strengt			ec		0		3			Recom	mended	Mud Pro	perties				
Gel Strengt					3		Rv Δι	uthority of:		Company F			•	ing Contrac	etor		
											•					I	
Gel Strengt					X 40.0			d Wt:	8.4-9.0	Filtr	ate:	10-14cc		osity:	31-34	11 / 11	
		3/30 min)			12.8		LC	CM:						s Lime:		lb/bbl	
Filtrate A	API HTHP	(cm3/30	min)		X					RECOMME			REATMEN	IT			
Cake Thick	ness (/	/32nds)			1		Keep a s	small stre	am of fre	esh water r	unning at	shaker					
Solids Cont	ent (%	by vol)			4.3		please m	nix 2 sx o	f Platinur	m Pac ove	er shift						
Water Cont	ent (%	6 by Vol.)			95.7												
Sand Conte	ent (9	% by vol)			.50												
Bentonite C					X												
pH 🗸	Strip	•	/leter		7.0												
Alkalinity M																	
Alkalinity, F		UIIIO 14/00	Acid	.20/.45													
Chloride (m			<i>m</i>		140												
Total Hardn		•	g/I)		40												
Oil Content		vol)			X												
LCM (lb/b	•				X												
Excess Lim	e (lb/bbl)			X												
							DAILY REMARKS										
		S	olids Ana	alysis													
L.G. Solids		%		H.G. Solids		%											
L.G. Solids		ppb		H.G. Solids		ppb											
	ed Solids	ррь	%		ge Sp. Gr.	ррь											
Correcti	eu Julius		/0	Averaç	_{je} ομ. Gr.			1	Dr.	ı		1				T	
Сн	EMICALS	SUPER	SODA	PLATINUM		FLOPAM	DF202	HOLE	PEL PLUG	PEL	NW-	BLEAC					
Offi	0,1L3	GEL X	ASH	PAC UL	им Рас	I LOI AIVI	0	PLUG	30	PLUG 60	220	Н					
Starting	Inventory	130	30	60	28	31	32	240		1		1				1	
Chemicals I		100	- 00	- 00		01	OL.	210									
	Inventory	130	30	60	28	31	32	240									
	als Used	0	0	0	0	0	0	0									
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0				<u> </u>					
Снеміс	CALS																
Starting Inv	entory																
	hemicals Received											Est.	Drayage:				
Closing Inve														st. Taxes:	\$	-	
Chemicals I	•		 											aily Cost:	\$		
	∪o c u											Ect		,	\$		
Daily Cost			<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>		ESt	. Cumula	tive Cost:	Ψ	•	
				Ryan Broo			EHOUSE			7 CR 18		NAME:					
TECHNICAL REP: CELL PHONE NO.				•			DDRESS:	F		n, CO 806	21		PHONE:				
CELL PHONE NO. ANS. SERVICE:				903-720-4773 ADDI					(303) 8	357-4171		I	PHONE:				

Hydro R 13027 Co FT Lupto Phone: 3	ounty R on, CO	Rd 18 80621				O	Ну	/dr	Orces	Da 10/2 Spud	nte 9/23	Меа	G MUD asured E 1,077 sent Ac	ft.	2 T.V. Dep 107 Rig	th 7 ft
Version 3.7	7 5									08/2	4/23		Reamin	g	100)31
OPERATO	OR:		Cit	y of Rio R	ancho		CONTR	ACTOR:		Hydro Re	esources					
Operator'	s Repres	sentative	:				Contrac	tor's Re	oresenta	tive:	Ty Curti	s				
Well	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	lexico
Rio	Ranco 9	9A	Legal:				VOL	UMES	PUMP I	NFORMA [®]	TION			HYDRA	AULICS	
BIT D		C		DRILLING	ASSEM	IBLY	Pit Vol.	350	PUI	MP #1	PUM	IP #2		NNULAR	VELOCI	ΓY
Bit Size	28	Size	30	set @		Ft		apacity						Pipe		
Bit Type Bit No.	Milltooth 1	Size		set @		Ft Ft		bbls olume		SPM		x SPM		Collar CULATIN	3 PRESS	HRE
Jets (3	32nd)	Size		set @		Ft		bbls		G/ST		OI W	CIIX	COLATIN	J I KLOC	OIL
(-			rill Collar	11				/olume		GPM				T. UP		
			rill Collar	0.075				bbls		BPM		DDM		TO BIT		
			Drill Pipe Drill Pipe					Cir Vol I bbls	Lota	II GPM	l otal	BPM	101.0	IR TIME		
Sample Fro	V FI	owline	Pit		d Prope	rtios		te Alkalir	nity 🗆	Check			HYDR	AULICS		
Flowline Te			<u></u>	- Mu	Х	tics	Galodia	to Alkalii		Officer	let \/a	elocity	IIIDI	AULIUU	Nozzle	Δτορ
	•	- (-)			16:30							_			NOZZIO	Aica
Time Samp Depth (ft)	ole Taken	10.30 10.77									Horse Impact					
	t (ppg)				8.90							ss at Bit				
Mud Weigh		<u> </u>							-		-					
Mud Gradie)	°F		0.4628					Page	l	ss at Bit				
Funnel Visc		1			31						mmende	ea Equip	ment			
Plastic Visc	_	75	°F		10		Cntrfuge		Shaker	✓	Desander					
Yield Point	•	•			5		Degasser		Desilter	<u> </u>	Other					
Gel Strengt					1						mended					
Gel Strengt			nin		3			uthority of:	✓	Company F	Representa	ative	Dril	ling Contra	ctor	1
Gel Strengt			nin	X				d Wt:	8.4-9.0	Filtr	ate:	10-14cc		cosity:	31-34	
		3/30 min)		12.8			LC	CM:						s Lime:		lb/bbl
		cm3/30	min)		X					RECOMME			EATMEN	IT		
Cake Thick	ness (/32nds)			1		Evening	shift plea	ase add 2	2 sx of Plat	tinum Pac	UL				
Solids Con	tent (%	by vol)			4.3		Keep a s	small stre	am of fre	sh water r	unning at	shaker				
Water Cont	tent (%	% by Vol.)			95.7											
Sand Cont	ent (°	% by vol)			.50											
Bentonite C	Content (lb/bbl)			X											
pH 🗸	Strip	<u> </u>	Meter		7.0											
Alkalinity M	lud (Pm)	cm3 N/50) Acid		X											
Alkalinity, I	Pf / Mf				.10/.30											
Chloride (r	ng/l)				140											
Total Hardr	ness as C	alcium (m	g/l)		40											
Oil Content	(% by	vol)			x											
LCM (lb/	bbl)				x											
Excess Lim	ne (lb/bbl)			x											
											DAILY R	EMARKS				
		S	olids Ana	-												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids Correct	ed Solids	ppb	%	H.G. Solids Average	je Sp. Gr.	ppb	-									
		CUDED		PLATINUM	PLATIN		DF202	Hole	FEL	PEL	NW-	BLEAC				
Сн	EMICALS	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60		Н		<u> </u>		<u></u>
	Inventory	130	30	60	28	31	32	240								
Chemicals		•					25	2.1-	ļ					ļ		
	Inventory cals Used		30 0	60	28 0	31 0	32 0	240 0			<u> </u>			 		
	Daily Cost		\$0	\$0	\$0	\$0	\$0	\$0			 					
			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u>. </u>		
Снемі	CALS															

IN CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

WAREHOUSE

ADDRESS

PHONE:

13027 CR 18

Ft. Lupton, CO 80621

(303) 857-4171

Est. Drayage:

Est. Daily Cost: Est. Cumulative Cost:

NAME:

PHONE:

Est. Taxes:

\$

Starting Inventory

Closing Inventory
Chemicals Used
Daily Cost

Chemicals Received

TECHNICAL REP:

CELL PHONE NO.

ANS. SERVICE:

Ryan Brooks

303-720-4775

Version 3.7		7340								08/2	4/23		Drilling		100	21
OPERATO			Cir	ty of Rio R	anaha		CONTRA	ACTOD:		Hydro Re			Drilling		100	31
				ly of Kio K	ancno											
Operator's	s Repres Name &							tor's Rep	resenta	tive:	Ty Curti			Ctoto	Now M	lovico
			Field:				County,		DUMBU	NFORMA	Sand	ovai		State:	New M	exico
	Ranco 9		Legal:	DDII I ING	ACCEN	IDL V						ID #0				F.V
Bit Size	A1A 28	Size	ASING 8	set @	80 80	Ft Ft	Pit Vol. Pipe C	350	PUI	MP #1	PUM	P #2		NNULAR Pipe	VELOCII	Y
Bit Type	Milltooth	Size	30	set @	00	Ft		obls		X		X		Collar		
Bit No.	1	Size		set @		Ft	Ann V		0	SPM	0	SPM		CULATING	3 PRESS	URE
Jets (3	32nd)	Size		set @		Ft		bbls	0.00	G/ST	0.00					
			ill Collar	11	4.5	180	Hole V			GPM				. UP		
			ill Collar	C 075	1 E	1100		bbls	Tota	BPM	Total	DDM	SURF.			
			Orill Pipe Orill Pipe	6.875	4.5	1128		Cir Vol bbls	TOla	I GPM	Total	DFIVI	101.0	IR TIME		
Sample Fro	√ FIG	owline	Pit	Mue	d Proper	ties		e Alkalin	ity	Check			HYDR	AULICS		
Flowline Te			<u></u>		X					Oncor	Jet Ve	elocity		102.00	Nozzle	Δτορ
		- (.)													INOZZIC	Alea
Time Samp	le Taken				07:30						Horse					
Depth (ft)					1308						Impact					
Mud Weigh					8.8						Press Lo					
Mud Gradie)	0-		0.4576		ļ					ss at Bit				
Funnel Visc	cosity @	1	°F		31						mmende	d Equip	ment			
Plastic Visc	c.cp @	75	°F		10		Cntrfuge		Shaker	✓ <u> </u>	Desander					
Yield Point	(lb/100ft2)			5		Degasser		Desilter		Other					
Gel Strengt	th (lb/100f	t2) 10-s	ec		0					Recom	mended	Mud Pro	perties			
Gel Strengt	th (lb/100f	t ²) 10-m	nin		1		By Au	thority of:	>	Company F	Representa	ative	Drilli	ing Contrac	ctor	
Gel Strengt	th (lb/100f	t ²) 30-m	nin		X		Mud	Wt:	8.4-9.0	Filtr	ate:	10-14cc	Visc	osity:	31-34	
Filtrate A	API (cm	3/30 min)			11.2		LC	:M:					Exces	s Lime:		lb/bbl
Filtrate A	API HTHP	(cm3/30	min)		X					RECOMM	ENDED TO	URLY TR	EATMEN	T		
Cake Thick	ness (/32nds)			1		Run a sn	nall strea	m of fres	h water at	shaker					
Solids Cont	,	by vol)			3.5		add 2 sx	of Platin	u,m Pac	UL over s	hift					
Water Cont		6 by Vol.)			96.5											
Sand Cont		% by vol.)			Trace											
Bentonite C					Х											
	Strip	, , , , , , , , , , , , , , , , , , ,	/leter													
P					7.0											
Alkalinity M		cm3 N/50) Acid		X											
Alkalinity, F					.10/.30											
Chloride (n					140											
Total Hardn		•	g/l)		40											
Oil Content		vol)			X											
LCM (lb/l	bbl)				X											
Excess Lim	e (lb/bbl)			X											
											DAILY R	EMARKS				
	1		olids Ana			0/										
L.G. Solids L.G. Solids		% ppb		H.G. Solids H.G. Solids		% ppb										
	ed Solids	հեռ	%		e Sp. Gr.	PPD										
		SUPER				Et on:	DF202	Hole	PEL	PEL	NW-	BLEAC				
	EMICALS	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60	220	Н				
	Inventory	130	30	60	28	31	32	240								
Chemicals		400	20	00	20	04	20	0.40								
	Inventory cals Used	130 0	30 0	60 0	28 0	31 0	32 0	240 0								
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0								
	, , , , , ,				*-	* -	7-	* -								
Снеміс	CALS															
Starting Inv	entorv											<u> </u>				
Chemicals I													Est.	Drayage:		
Closing Inve														st. Taxes:	\$	-
Chemicals I	Used													ily Cost:	\$	-
Daily Cost												Est	. Cumulat	ive Cost:	\$	-
	TECHNIC			Ryan Brool			EHOUSE			7 CR 18			NAME:			
•	CELL PH	ONE NO.	3	03-720-477	75	Α	DDRESS:	Ft		n, CO 806	21		PHONE:			
	ANC C		-			-			1 211.51 0	- , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	· · · · · · · · · · · · · · · · · · ·	-		

r none. s		7340								Spuu			SEIIL ACI	-	Nig	
Version 3.7	5									08/2			Reamin	g	100	031
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources					
Operator's	s Repres	sentative	e:				Contrac	tor's Rep	oresenta	tive:	Ty Curti	s				
Well I	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	/lexico
Rio	Ranco 9	9A	Legal:				VOLU	JMES	PUMP I	NFORMA [*]	TION			HYDR/	ULICS	
BIT D	ATA	C	ASING 8	DRILLING	S ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUM	IP #2	Α	NNULAR	VELOCI	TY
Bit Size	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft	27	bbls		Х		X	Drill	Collar		
Bit No.	1	Size		set @		Ft	Ann V	olume/	0	SPM	0	SPM	CIRO	CULATING	3 PRESS	SURE
Jets (3	2nd)	Size		set @		Ft		bbls		G/ST	0.00					
0010 (0			ill Collar	11	4.5	180		/olume	0.00	GPM	0.00		BO	Γ. UP		
			ill Collar		1.0	100		6 bbls		BPM				TO BIT		
			Drill Pipe	6.875	4.5	1185		Cir Vol	Tota	I GPM	Total	RPM		IR TIME		
			Orill Pipe		7.0	1100		6 bbls	1010	II OI IVI	Total	DI W	101.0	IIX TIIVIL		
	✓ Flo		Pit		-l Dansan				its a	Observio			LIVER	A I II 100		
Sample Fro			JPIt	Wiu	d Proper	ties	Calculat	te Alkalir	iity 🗀	Check			HYDR	AULICS		
Flowline Te	•	e (°F)			X						Jet Ve		1		Nozzle	e Area
Time Samp	le Taken				15:30							power				
Depth (ft)					1365							t Force				
Mud Weigh					8.8							ss at Bit				
Mud Gradie	ent (psi/ft))			0.4576						Press Lo	ss at Bit				
Funnel Visc	cosity @		°F		31					Reco	mmende	d Equip	ment			
Plastic Visc	.cp @	75	°F		20		Cntrfuge		Shaker	J	Desander					
Yield Point	•)			5		Degasser		Desilter		Other					
Gel Strengt	•	•	ec		2					Recom	mended	Mud Pro	perties			
Gel Strengt			nin		5		By Au	uthority of:	Image: section of the content of the	Company F	Representa	ative	Drill	ing Contrac	ctor	
Gel Strengt			nin		X			d Wt:	8.4-9.0	Filtr	•	10-14cc		osity:	31-34	
		3/30 min)			11.2			CM:	0.10.0	1 110	ato.	10 1100		s Lime:	0101	lb/bbl
	API HTHP				x					RECOMME	NDED TO	I NIRI Y TR				157551
Cake Thick		/32nds)	111111)		1		Koon o c	amall etro		esh water r			CATIVILI	•		
								of Platin		esti water i	unning at	Snaker				
Solids Cont		by vol)			3.5 96.5		auu 2 SX	oi Piatin	um Pac							
Water Cont		6 by Vol.)														
Sand Conte	•	% by vol)			.50											
Bentonite C					X											
pH 🗸	Strip		Meter		7.0											
Alkalinity M		cm3 N/50) Acid		X											
Alkalinity, F					.10/.35											
Chloride (m			<i>m</i>		140											
Total Hardn		•	g/I)		40											
Oil Content		vol)			X											
LCM (lb/k					X											
Excess Lim	e (lb/bbl)			X											
											DAILY R	EMARKS				
		S	olids Ana	alysis												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
Correct	ed Solids	<u> </u>	%	Averaç	ge Sp. Gr.											
		SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC				
Сн	EMICALS	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60	220	Н				
Storting	Inventor:	120	30	60	20	21	32	240	50			 				
Chemicals I	Inventory	130	30	OU	28	31	ა∠	240				 				
		120	20	60	20	24	20	240								
	Inventory	130	30	60	28	31	32	240								
	cals Used	-	0	0	0	0	0	0		-		-				
Ľ	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0		<u> </u>		<u> </u>				
_			1	ı		Т	1	ı		1		1		1		
Снеміс			ļ				ļ			ļ		<u> </u>]			
Starting Inv																
Chemicals I	Received													Drayage:		
Closing Inve	entory													st. Taxes:	\$	-
Chemicals I	Used													aily Cost:	\$	-
Daily Cost												Est	. Cumula	tive Cost:	\$	-
	TECHNIC	AL REP:	F	Ryan Broo	ks	WAR	EHOUSE		1302	7 CR 18			NAME:			
(CELL PH	ONE NO.		03-720-47		Α	DDRESS:	F		n, CO 806	21		PHONE:			
		ERVICE:					PHONE:			357-4171			PHONE:			

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	ivity	Rig	No.
Version 3.7	' 5									08/2	4/23		Reaming	g	100	031
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources			·		
Operator's	s Repres	sentativ					Contrac	tor's Rep	resenta	tive:	Ty Curti	s				
Well I	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	/lexico
Rio	Ranco 9)A	Legal:				VOLU	JMES	PUMP I	NFORMA [*]	TION			HYDRA	ULICS	
BIT D	ATA	C		DRILLING	S ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUM	IP #2	Α	NNULAR	VELOCI	TY
	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
	Milltooth			set @		Ft		bbls		Х		X		Collar		
Bit No.	1	Size		set @		Ft	_	olume	0	SPM	0	SPM		CULATING	3 PRESS	SURF
Jets (3		Size		set @		Ft		bbls		G/ST	0.00	OI W	Onto	30L/ (TIIV	J I KLOC	OILE
0613 (3	211u)		rill Collar	11	4.5	180		/olume	0.00	GPM	0.00		POT	Γ. UP		
				11	4.5	100										
			rill Collar	C 075	4.5	1045		bbls	Tota	BPM	Total	DDM		TO BIT		
			Orill Pipe		4.5	1245		Cir Vol	Tota	I GPM	Total	BPIVI	101.0	IR TIME		
			Orill Pipe					bbls								
Sample Fro			Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS		
Flowline Te	mperature	e (°F)			X						Jet Ve	elocity			Nozzle	e Area
Time Samp	le Taken				07:30						Horse	power				
Depth (ft)					1425						Impact	Force				
Mud Weigh	t (ppg)				8.9						Press Lo	ss at Bit				
Mud Gradie	ent (psi/ft))			0.4628						Press Lo	ss at Bit				
Funnel Visc	cosity @		°F		32					Reco	mmende	d Equip	ment			
Plastic Visc		75	°F		10		Cntrfuge		Shaker		Desander					
Yield Point	•				5		Degasser		Desilter	\Box	Other					
Gel Strengt	•	•	sec		1		Degasser		Desilier	Recom	mended	Mud Pro	perties			
Gel Strengt					5		Βν Δι	thority of:	J	Company F			•	ing Contrac	etor	
Gel Strengt								Wt:	8.4-9.0	Filtr	•	10-14cc			31-34	1
		3/30 min)			12.8			M:	0.4-9.0	FIIU	ale.	10-1400		osity: s Lime:	31-34	lb/bbl
							LC	JIVI.		DECOMME	NDED TO	LIDLY TO				ID/DDI
	API HTHP	•	min)		X		1.6			RECOMME			EAIMEN	1		
Cake Thick	•	/32nds)			1					sh water r	unning at	shaker				
Solids Cont		by vol)			4.3		add 2 sx	of Platin	um Pac l	JL						
Water Cont		6 by Vol.)			95.7											
Sand Conte		% by vol)			.50											
Bentonite C			_		X											
pH 🗸	Strip		Meter		7.0											
Alkalinity M		cm3 N/50	0 Acid		X											
Alkalinity, F					.10/.30											
Chloride (m					140											
Total Hardn		•	ıg/l)		40											
Oil Content		vol)			X											
LCM (lb/k	•				X											
Excess Lim	e (lb/bbl)			X											
											DAILY R	EMARKS				
		S	olids Ana	alysis												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
Correct	ed Solids		%	Averaç	ge Sp. Gr.											
	·	SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC				
Сн	EMICALS	GEL X	ASH	PAC UL	UM PAC	FLOPAM	0	PLUG	PLUG	PLUG 60	220	H				
0		400						0.40	30							
Starting		130	30	60	28	31	32	240						 		
Chemicals I		400						0.40								
	Inventory	130	30	60	28	31	32	240								
	als Used	0	0	0	0	0	0	0								1
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0								
		ī		T	1		1		ī	1						
Снеміс																
Starting Inv	entory															
Chemicals I	Received													Drayage:		
Closing Inve	entory												E	st. Taxes:	\$	-
Chemicals I	Used													aily Cost:	\$	-
Daily Cost												Est	. Cumula	tive Cost:	\$	-
	TECHNIC	AL REP:	F	Ryan Broo	ks	WAR	EHOUSE		13027	7 CR 18			NAME:			
	CELL PH	ONE NO.		03-720-47		Α	DDRESS:	F		n, CO 806	21		PHONE:			
		FRVICE:					PHONE:			357-4171			PHONE:			

Hydro Resources
13027 County Rd 18
FT Lupton, CO 80621
Phone: 303-857-7540
Version 3.75
OPERATOR: City of Rio Rancho

Version 3.75									08/2	4/23		Rreamin	a	100	31
OPERATOR:		Cit	y of Rio R	ancho		CONTRA	ACTOR:		Hydro Re			rti canini	9 [100	
Operator's Repres	<u>.</u> sentative		y or relote	anono				oresenta	_	Ty Curtis	<u> </u>				
Well Name &		Field:				County,		Ji Cocinta		Sande			State:	New M	lexico
Rio Ranco 9		Legal:					JMES	PUMPII	NFORMA		- · · · ·		HYDRA		ожіос
BIT DATA			DRILLING	ASSEN	IBLY	Pit Vol.	350		ИР #1	PUM	P #2	ΔΙ	NNULAR		Υ
Bit Size 28	Size		set @		Ft		apacity	1 011		1 0111			Pipe		
Bit Type Milltooth		30	set @	- 00	Ft		bbls		Х	,	X		Collar		
Bit No. 1	Size		set @		Ft		olume		SPM		SPM		CULATING	DDESS	IIDE
	4			<u> </u>	Ft		B bbls		G/ST	0.00	SFIVI	CIIX	JULATING	FILOS	UKL
Jets (32nd)	Size	ill Callar	set @	4.5						0.00		DOT	. UP		
	-	ill Collar	11	4.5	180		olume bbls		GPM				TO BIT		
		ill Collar Drill Pipe	6.875	4.5	1309		Cir Vol		BPM I GPM	Total	DDM		IR TIME		
	-	orill Pipe	0.073	4.5	1309		bbls	Tota	I GF W	Total	DEIVI	101.0	IIX TIIVIL		
Sample Fro				d Dansage				14.4	Ob I-			HVDD	A I II I I O O		
Sample Fro Flowline Temperature		Pit	Mu	d Proper	ties	Calculat	e Alkalir	іку 🗀	Check	1.434		HTUR	AULICS		
•	e (F)			X						Jet Ve				Nozzle	Area
Fime Sample Taken				16:30						Horse					
Depth (ft)				1489						Impact					
Mud Weight (ppg)	<u> </u>			8.9						Press Lo					
Mud Gradient (psi/ft)	°F		0.4628						Press Lo					
Funnel Viscosity @				31						mmende	ea Equip	ment			
Plastic Visc.cp @	75	°F		5		Cntrfuge	<u> </u>	Shaker	<u> </u>	Desander					
Yield Point (lb/100ft2				5		Degasser		Desilter	<u> </u>	Other	Maria Di	martic -			
Gel Strength (lb/100f Gel Strength (lb/100f				0		A				mended		•	0 .		
				2			ithority of:		Company F				ng Contrac		
Gel Strength (lb/100f		iin		X			Wt:	8.4-9.0	Filtr	ate:	10-14cc		osity:	31-34	11- /1- 1- 1
iltrate API (cm				12.8		LC	CM:		25001111	NDED TO	LIBLY TO		s Lime:		lb/bbl
Filtrate API HTHP	•	min)		X		17			RECOMME			EAIMEN	<u>I</u>		
,	/32nds)			1					sh water r			-1-16			
	by vol)			4.3		Evening	snift piea	ise add 2	sx of Plat	inum Pac	: UL over	SNITT			
	% by Vol.)			95.7											
Bentonite Content (% by vol)			.50 x											
oH ✓ Strip		/leter		7.0											
Alkalinity Mud (Pm)				х											
Alkalinity, Pf / Mf	01110 14/00	7 Told		.10/.30											
Chloride (mg/l)				140											
Total Hardness as C	alcium (m	g/l)		40											
Oil Content (% by		,		X											
_CM (lb/bbl)	•			х											
Excess Lime (lb/bbl	l)			X											
										DAILY RI	EMARKS				
	S	olids Ana	lysis												
G. Solids	%		H.G. Solids		%										
G. Solids	ppb		H.G. Solids		ppb										
Corrected Solids		%	Averag	ge Sp. Gr.											
	SUPER	SODA	PLATINUM	PLATIN		DF202	Hole	PEL	PEL	NW-	BLEAC		Ī		
CHEMICALS	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60	220	Н				
Starting Inventory	130	30	60	28	31	32	240	55							
Chemicals Received		- 50			<u> </u>	- J2	_ +0								
Closing Inventory		30	60	28	31	32	240								
Chemicals Used		0	0	0	0	0	0								
Daily Cost	-	\$0	\$0	\$0	\$0	\$0	\$0								
•	-	•		<u> </u>	•						•				
CHEMICALS															
Starting Inventory															
Chemicals Received												Est.	Drayage:		
Closing Inventory													st. Taxes:	\$	-
Chemicals Used												Est. Da	ily Cost:	\$	-
Daily Cost											Est		ive Cost:	\$	-
TECHNIC	CAL REP:	F	Ryan Brool	ks	WAR	EHOUSE		13027	7 CR 18			NAME:			
CELL PH	ONE NO.		03-720-47			DDRESS:			n, CO 806	21		PHONE:			
ANS S	ERVICE:					PHONE:			57-4171			PHONE:			

Hydro R							H	vd	ro			1	G MUD F		_	1
13027 C	-						••	reso	urces	Da	ate	Mea	asured D	epth	T.V. Dep	th
FT Lupte	on, CO	80621						7 6 8 0	urces	11/0	4/23		1,643	ft.	164	3 ft
Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	ivity	Rig	No.
Version 3.7	75					-				08/2	4/23		Reaming	a	100	031
OPERATO	OR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	esources					
Operator'	s Repres	sentativ		ĺ			Contrac		oresenta		Ty Curti					
Well	Name &	No.	Field:				County,				Sand			State:	New N	lexico
Rio	Ranco 9	9A	Legal:				VOL	JMES	PUMP I	NFORMA	TION			HYDR	AULICS	
BIT D	ATA	C	ASING 8	RDRILLING	S ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUN	IP #2	Al	NNULAR	VELOCI	TY
Bit Size	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft	32	bbls		Х		x	Drill (Collar		
Bit No.	1	Size		set @		Ft	Ann V	olume '	0	SPM	0	SPM	CIRC	CULATIN	G PRESS	SURE
Jets (3	32nd)	Size		set @		Ft	1290) bbls	0.00	G/ST	0.00					
		Dı	rill Collar	11	4.5	180	Hole \	/olume		GPM			ВОТ	. UP		
		Di	rill Collar				1322	2 bbls		BPM			SURF.	TO BIT		
		[Orill Pipe	6.875	4.5	1463		Cir Vol	Tota	al GPM	Total	BPM		IR TIME		
		H.W. [orill Pipe				1672	2 bbls								
Sample Fro	FIG	owline	Pit	Mu	d Proper	rties	Calculat	te Alkalir	nity	Check	1		HYDR	AULICS		
Flowline Te					x						Jet Ve	elocity			Nozzle	e Area
Time Samp	ole Taken	. ,			07:20						Horse					
Depth (ft)	or ranon				1643						Impac					
Mud Weigh	nt (ppg)				8.9						Press Lo					
Mud Gradie)			0.4628						Press Lo	ss at Bit				
Funnel Visc	- "	,	°F		31					Reco	mmende	d Equip	ment			
Plastic Visc	· ·	75	°F		5		Cntrfuge		Shaker	V	Desander					
Yield Point	•				5		Degasser		Desilter		Other	Н				
Gel Strengt	•	•	sec		0		g			Recom	mended	Mud Pro	perties			
Gel Strengt	•	_	nin		0		By Au	uthority of:	1	Company F			•	ing Contra	ctor	
Gel Strengt	th (lb/100f	t ²) 30-n	nin		х			d Wt:	8.4-9.0		ate:	10-14cc		osity:	31-34	
Filtrate	API (cm	3/30 min)			12.8		LC	CM:					Exces	s Lime:		lb/bb
Filtrate	API HTHP	cm3/30	min)		X					RECOMM	ENDED TO	URLY TR	EATMEN	Т		
Cake Thick	iness (/32nds)			1		Keep a s	small stre	am of fre	esh water r	unning at	shaker				
Solids Con		by vol)			4.3		•			slowly ove						
Water Con	tent (%	% by Vol.)			95.7											
Sand Cont	tent (°	% by vol)			.50											
Bentonite C	Content (lb/bbl)			X											
pH ✓	Strip		Meter		7.0											
Alkalinity M		cm3 N/5	0 Acid		X											
Alkalinity,					.10/.30											
Chloride (r					140											
Total Hardr			ng/l)	-	40											
Oil Content		vol)			X											
LCM (lb/ Excess Lim	/bbl)	N		-	X											
EXCess LIII	ie (ib/bbi)			X						DAILY R	EMADKE				
			olids Ana	alvoio			<u> </u> 				DAILI K	LIVIANNO				
	1		Olius Alia			lo/	1									
L.G. Solids L.G. Solids		%		H.G. Solids H.G. Solids		%										
	ted Solids	ppb	%	1	je Sp. Gr.	ppb										
Correct	iou Jolius					<u> </u>		1	PEL	1	Ι	I	1			I
Сн	IEMICALS	SUPER GEL X	SODA ASH	PLATINUM PAC UL	PLATIN UM PAC	FLOPAM	DF202 0	HOLE PLUG	PLUG 30	PEL PLUG 60	NW- 220	BLEAC H				
Starting	Inventory	130	30	60	28	31	32	240								
Chemicals	Received															
<u> </u>	Inventory		30	60	28	31	32	240								
	cals Used		0	0	0	0	0	0								
ſ	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	Ī	1	Ī				1

TECHNICAL REP:	Ryan Brooks	WAREHOUSE	13027 CR 18	NAME:	
CELL PHONE NO.	303-720-4775	ADDRESS:	Ft. Lupton, CO 80621	PHONE:	
ANS. SERVICE:		PHONE:	(303) 857-4171	PHONE:	

Est. Drayage: Est. Taxes:

Est. Daily Cost:

Est. Cumulative Cost:

\$

\$

CHEMICALS
Starting Inventory

Closing Inventory

Chemicals Used

Daily Cost

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621

DRILLING MUD REPORT 32

Date Measured Depth T.V. Depth
11/04/23 1,701 ft. 1701 ft

Spud Date Present Activity Rig No.

08/24/23 Reaming 10031

Phone: 3	303-857	-7540								Spud	Date	Pre	sent Act	tivity	Rig	No.
Version 3.7	' 5									08/2	4/23		Reaming	g	100	031
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	esources			-		
Operator's	s Repres	sentativ					Contrac	tor's Re	resenta	tive:	Ty Curti	s				
Well I	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	/lexico
Rio	Ranco 9)A	Legal:				VOLU	JMES	PUMP I	NFORMA	TION			HYDRA	ULICS	
BIT D	ATA	C		DRILLING	S ASSEN	IBLY	Pit Vol.	350		MP #1	PUN	IP #2	Α	NNULAR	VELOCI	TY
	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
	Milltooth			set @		Ft		bbls		Х		X		Collar		
Bit No.	1	Size		set @		Ft		olume	0	SPM	0	SPM		CULATING	3 PRESS	SURF
Jets (3		Size		set @		Ft		bbls		G/ST	0.00	OI W	Onto	30L/ (1114)	J I KEGO	OILE
0613 (3	211u)		rill Collar	11	4.5	180		/olume	0.00	GPM	0.00		POT	Γ. UP		
				11	4.5	100										
			rill Collar	C 075	4.5	4504		bbls	Tota	BPM	Total	DDM		TO BIT		
			Orill Pipe		4.5	1521		Cir Vol	Tota	I GPM	Total	BPIVI	101.0	IR TIME		
			Orill Pipe					bbls								
Sample Fro			Pit	Mu	d Proper	ties	Calculat	te Alkalir	ity 🗀	Check			HYDR	AULICS		
Flowline Te	mperature	e (°F)			X						Jet Ve	elocity			Nozzle	e Area
Time Samp	le Taken				16:30						Horse	power				
Depth (ft)					1701						Impac	Force				
Mud Weigh	t (ppg)				8.9						Press Lo	ss at Bit				
Mud Gradie	ent (psi/ft))			0.4628						Press Lo	ss at Bit				
Funnel Visc	cosity @		°F		32					Reco	mmende	d Equip	ment			
Plastic Visc		75	°F		10		Cntrfuge		Shaker	7	Desander					
Yield Point	•				5		Degasser		Desilter		Other					
Gel Strengt	•	•	sec		1		Degasser		Desilier	Recom	mended	Mud Pro	perties			
Gel Strengt					3		Βν Δι	thority of:	J	Company F			•	ing Contrac	etor	
Gel Strengt								Wt:	8.4-9.0	Filtr	•	10-14cc			31-34	1
		3/30 min)			12.0			M:	0.4-9.0	FIIU	ale.	10-1400		osity: s Lime:	31-34	lb/bbl
							LC	JIVI.		DECOMME	NDED TO	LIDLY TO				ID/DDI
	API HTHP	•	min)		X		1.6			RECOMME			EAIMEN	I I		
Cake Thick	,	/32nds)			2					sh water r			1.16			
Solids Cont		by vol)			4.3		evening	shift plea	se add 2	sx of Plat	inum Pac	UL over	shift			
Water Cont		6 by Vol.)			95.7											
Sand Conte		% by vol)			.50											
Bentonite C			_		X											
pH 🗸	Strip		Meter		7.0											
Alkalinity M		cm3 N/5	0 Acid		X											
Alkalinity, F					.10/.30											
Chloride (m					140											
Total Hardn			ıg/l)		40											
Oil Content		vol)			X											
LCM (lb/k	•				X											
Excess Lim	e (lb/bbl)			X											
											DAILY R	EMARKS				
		S	olids Ana	alysis												
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
Correct	ed Solids	<u> </u>	%	Averaç	ge Sp. Gr.											
		SUPER	SODA	PLATINUM	PLATIN	_	DF202	Hole	PEL	PEL	NW-	BLEAC				
Сн	EMICALS	GEL X	ASH	PAC UL	им Рас	FLOPAM	0	PLUG	PLUG 30	PLUG 60	220	Н				
Ot - otio -	l	400	00	00	00	0.4	00	0.40	30							
Starting Chemicals		130	30	60	28	31	32	240								
		400	20	00	00	0.4	00	0.40								
	Inventory	130	30	60	28	31	32	240								
	cals Used	0	0	0	0	0	0	0								
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0								
_		1		T	ı		ı		T	T	ı	1		, ·		
Снеміс		ļ												<u> </u>		
Starting Inv	entory															
Chemicals I	Received													Drayage:		
Closing Inve	entory													st. Taxes:	\$	-
Chemicals I	Used													aily Cost:	\$	-
Daily Cost		<u> </u>		<u> </u>			<u> </u>				<u> </u>	Est	. Cumula	tive Cost:	\$	-
•	TECHNIC	AL REP:	F	Ryan Broo	ks	WAR	EHOUSE		13027	7 CR 18			NAME:			
(CELL PH	ONE NO.	3	03-720-47	75	Al	DDRESS:	F	t. Luptor	n, CO 806	21		PHONE:			
	ANS S	FRVICE:					PHONE:			357-4171			PHONE:			

Hydro Resources 13027 County Rd 18 FT Lupton, CO 80621

Phone: 303-857-7540 Version 3.75 08/24/23 10031 Reaming OPERATOR: City of Rio Rancho CONTRACTOR: Hydro Resources Contractor's Representative: Ty Curtis Operator's Representative: State: New Mexico County, Parish: Well Name & No. Field: Sandoval Rio Ranco 9A Legal: **VOLUMES** PUMP INFORMATION **HYDRAULICS CASING & DRILLING ASSEMBLY** PUMP #1 PUMP #2 **ANNULAR VELOCITY BIT DATA** Pit Vol. 350 Pipe Capacity Drill Pipe Bit Size Size set @ 80 Bit Type Milltooth Size set @ 36 bbls **Drill Collar** Bit No. set @ Ann Volume 0 SPM 0 SPM CIRCULATING PRESSURE Size Ft 0.00 G/ST Jets (32nd) Size set @ 1427 bbls 0.00 **Drill Collar** 4.5 180 Hole Volume GPM BOT. UP **Drill Collar** 1463 bbls BPM SURF. TO BIT **Drill Pipe** 6.875 4.5 1635 Total Cir Vol Total GPM Total BPM TOT. CIR TIME H.W. Drill Pipe 1813 bbls ✓ Flowline Pit Calculate Alkalinity **HYDRAULICS Mud Properties** Towline Temperature (°F) Jet Velocity Nozzle Area X ime Sample Taken 07:00 Horsepower 1815 Impact Force epth (ft) Mud Weight 8.9 Press Loss at Bit Mud Gradient (psi/ft) 0.4628 Press Loss at Bit Funnel Viscosity @ **32 Recommended Equipment** 10 Plastic Visc.cp @ 75 Desander Gel Strength (lb/100ft2) 1 **Recommended Mud Properties** By Authority of: Sel Strength (lb/100ft²) 10-min 4 Company Representative Drilling Contractor Sel Strength (lb/100ft²) 30-min X Mud Wt: (cm3/30 min) 12.8 API HTHP (cm3/30 min) X RECOMMENDED TOURLY TREATMENT Cake Thickness (/32nds) 2 Geep a small stream of fresh water running at shaker (% by vol) 95.7 Water Content (% by Vol.) and Content (% by vol) .50 Bentonite Content (lb/bbl) 7.0 Strip Alkalinity Mud (Pm) cm3 N/50 Acid X Alkalinity, Pf / Mf 10/.30 Chloride (mg/l) 140 Fotal Hardness as Calcium (mg/l) 40 Oil Content (% by vol) X (lb/bbl) xcess Lime (lb/bbl) DAILY REMARKS Solids Analysis ..G. Solids H.G. Solids H.G. Solids ..G. Solids ppb ppb Corrected Solids Average Sp. Gr. PLATIN DF202 HOLE PEL NW-BLEAC SUPER SODA PLATINUM CHEMICALS FLOPAM PLUG PLUG 60 PAC UL им Рас 220 30 32 Starting Inventory 130 30 60 28 31 240 hemicals Received 130 30 28 31 60 32 240 Closing Inventory Chemicals Used 0 0 0 0 0 0 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 CHEMICALS Starting Inventory Chemicals Received Est. Drayage: Est. Taxes: Closing Inventory Chemicals Used Est. Daily Cost: \$ Daily Cost **Est. Cumulative Cost** TECHNICAL REP: WAREHOUSE 13027 CR 18 Ryan Brooks NAME: **CELL PHONE NO.** 303-720-4775 ADDRESS: Ft. Lupton, CO 80621 PHONE: ANS. SERVICE: PHONE: (303) 857-4171 PHONE:

CONSIDERATION OF THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, IT IS AGREED THAT NO RECOMMENDATIONS MADE HEREON SHALL BE CONSTRUED AS

AUTHORIZING THE INFRINGMENT OF ANY VALID PATENT, AND IT IS AGREED THAT SHALL NOT BE LIABLE FOR ANY DAMAGES

RESULTING FROM THE FURNISHING OF THIS REPORT AND ORAL SUGGESTIONS, AND IS TO BE HELD HARMLESS.

DRILLING MUD REPORT 34

Date Measured Depth T.V. Depth
11/05/23 1,863 ft. 1863 ft

Spud Date Present Activity Rig No.

08/24/23 Reaming 10031

r none. 3		7.540								Spuu				-	Kig	
Version 3.7										08/2			Reamin	g	100	031
OPERATO	DR:		Ci	ty of Rio R	ancho		CONTR	ACTOR:		Hydro Re	sources					
Operator's	s Repres	sentative	e:				Contrac	tor's Rep	oresenta	tive:	Ty Curti	s				
Well I	Name &	No.	Field:				County,	Parish:			Sand	oval		State:	New N	/lexico
Rio	Ranco 9)A	Legal:				VOL	JMES	PUMP I	NFORMA [*]	TION			HYDRA	ULICS	
BIT D	ATA	C	ASING 8	DRILLING	S ASSEN	IBLY	Pit Vol.	350	PUI	MP #1	PUM	IP #2	Α	NNULAR	VELOCI	TY
Bit Size	28	Size	30	set @	80	Ft	Pipe C	apacity					Drill	Pipe		
Bit Type	Milltooth	Size		set @		Ft	37	bbls		Х		X	Drill	Collar		
Bit No.	1	Size		set @		Ft	Ann V	olume	0	SPM	0	SPM	CIRO	CULATING	3 PRESS	SURE
Jets (3	2nd)	Size		set @		Ft		bbls		G/ST	0.00					
(5			ill Collar	11	4.5	180		/olume		GPM			BO	Γ. UP		
			ill Collar		1.0	100		2 bbls		BPM				TO BIT		
			Drill Pipe	6.875	4.5	1683		Cir Vol	Tota	I GPM	Total	RPM		IR TIME		
			Orill Pipe		7.0	1000		2 bbls	1010	II OI W	Total	DI W	101.0	IIX TIIVIL		
	✓ Flo		Pit		-I Dansan				its a	Observio			LIVER	A I II 100		
Sample Fro			JPIt	Mu	d Proper	ties	Calculat	te Alkalir	iity 🗀	Check	1.434	1 1	HYDR	AULICS		
Flowline Te	•	e (°F)			X						Jet Ve		1		Nozzle	e Area
Time Samp	le Taken				15:45							power				
Depth (ft)					1863							t Force				
Mud Weigh	t (ppg)				9.0							ss at Bit				
Mud Gradie	ent (psi/ft))			0.468						Press Lo	ss at Bit				
Funnel Visc	cosity @		°F		33					Reco	mmende	d Equip	ment			
Plastic Visc	.cp @	75	°F		10		Cntrfuge		Shaker	J	Desander					
Yield Point)			5		Degasser		Desilter		Other					
Gel Strengt			ec		2					Recom	mended	Mud Pro	perties			
Gel Strengt			nin		6		By Au	uthority of:	Image: section of the content of the	Company F	Representa	ative	Drill	ing Contrac	ctor	
Gel Strengt	h (lb/100f	t ²) 30-m	nin		X			d Wt:	8.4-9.0	Filtr	•	10-14cc		osity:	31-34	
		3/30 min)			12.8			CM:						s Lime:		lb/bbl
	API HTHP				X				I.	RECOMME	NDED TO	URLY TR				
Cake Thick		(32nds)	,		2		Keen a 1	1" etroam		water runr			,	•		
Solids Cont		by vol)			5.0					sx of Plat			chift			
Water Cont		6 by Vol.)			95.0		Lverning	Still pied	ise auu c	SX UI FIAI	illulli Fac	OL OVE	SHIIL			
Sand Cont		% by vol.)			.50											
Bentonite C					.30 X											
pH 🗸	Strip	•	/leter		7.0											
Alkalinity M																
		UIII3 N/SC	Acid		.10/.30											
Alkalinity, F					140											
Chloride (m Total Hardn		alaium (m	~ /I\		40											
Oil Content		•	9/1)													
LCM (lb/t		VOI)			X											
Excess Lim		`			X											
EXCESS LIIII	e (lb/bbl)			X						DAILY R	EMARKS				
											DAILT K	EWAKKS				
	1		olids Ana	•		1										
L.G. Solids		%		H.G. Solids		%										
L.G. Solids		ppb		H.G. Solids		ppb										
Correct	ed Solids		%	Averaç	ge Sp. Gr.			1	1 -	1		_	1			1
Сн	EMICALS	SUPER	SODA	PLATINUM		FLOPAM	DF202	HOLE	PEL PLUG	PEL	NW-	BLEAC				
		GEL X	ASH	Pac UL	им Рас		0	PLUG	30	PLUG 60	220	Н				
	Inventory	130	30	60	28	31	32	240								
Chemicals I																
Closing	Inventory	130	30	60	26	31	32	240								
Chemic	als Used	0	0	0	2	0	0	0								
	Daily Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0								
Снеміс	CALS															
Starting Inv	entory															
Chemicals I													Est.	Drayage:		
Closing Inve														st. Taxes:	\$	-
Chemicals I	•												Est. Da	aily Cost:	\$	-
Daily Cost												Est		tive Cost:	\$	-
			•	•					•	•						
	TECHNIC	AL RFP	F	Ryan Broo	ks	WAR	EHOUSE		1302	7 CR 18			NAME:			
	CELL PH			303-720-47			DDRESS:			n, CO 806	21	l	PHONE:			
,		ERVICE:		· 			PHONE:	<u> </u>		357-4171	-		PHONE:			

Appendix E.

Zone sampling water-quality laboratory reports, City of Rio Rancho Well 9R

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 25, 2023

Tyler Curtis
Hydro Resources RM
13207 County Road 18, Unit C

Fort Lupton, CO 80621 TEL: (303) 857-7540 FAX: (505) 856-6501

RE: Rio Rancho Well 9R OrderNo.: 2309474

Dear Tyler Curtis:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/11/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2309474**

Date Reported: 9/25/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hydro Resources RM

Client Sample ID: Zone 1

Project: Rio Rancho Well 9R **Collection Date:** 9/9/2023 4:55:00 PM

Lab ID: 2309474-001 **Matrix:** AQUEOUS **Received Date:** 9/11/2023 10:51:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: DISSOLVED METALS						Analyst	bcv
Arsenic	0.086	0.0025	*	mg/L	5	9/18/2023 2:36:22 PM	B99768
EPA 200.8: METALS						Analyst	: bcv
Antimony	ND	0.0010		mg/L	1	9/15/2023 1:32:16 PM	77455
Arsenic	0.10	0.0025	*	mg/L	5	9/19/2023 1:10:46 PM	77455
Barium	0.046	0.0010		mg/L	1	9/15/2023 1:32:16 PM	77455
Beryllium	ND	0.00050		mg/L	1	9/15/2023 1:32:16 PM	77455
Cadmium	ND	0.00050		mg/L	1	9/15/2023 1:32:16 PM	77455
Chromium	0.0066	0.0010		mg/L	1	9/15/2023 1:32:16 PM	77455
Copper	0.0066	0.00050		mg/L	1	9/15/2023 1:32:16 PM	77455
Iron	ND	0.020		mg/L	1	9/15/2023 1:32:16 PM	77455
Lead	0.00057	0.00050		mg/L	1	9/15/2023 1:32:16 PM	77455
Manganese	ND	0.0010		mg/L	1	9/15/2023 1:32:16 PM	77455
Nickel	0.037	0.00050		mg/L	1	9/15/2023 1:32:16 PM	77455
Selenium	ND	0.0010		mg/L	1	9/15/2023 1:32:16 PM	77455
Thallium	ND	0.00025		mg/L	1	9/15/2023 1:32:16 PM	77455
Uranium	0.0010	0.00050		mg/L	1	9/15/2023 1:32:16 PM	77455
SM2340B: HARDNESS						Analyst	: JRR
Hardness as CaCO3	14	6.6		mg/L	1	9/14/2023	R99698
EPA METHOD 180.1: TURBIDITY						Analyst	: KS
Turbidity	26	0.50	*	NTU	1	9/11/2023 12:20:00 PM	R99588
EPA METHOD 300.0: ANIONS						Analyst	SNS
Fluoride	0.55	0.50		mg/L	5	9/12/2023 2:05:28 PM	R99646
Chloride	5.2	2.5		mg/L	5	9/12/2023 2:05:28 PM	R99646
Sulfate	41	2.5		mg/L	5	9/12/2023 2:05:28 PM	R99646
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: RBC
Conductivity	350	10		µmhos/d	2 1	9/12/2023 3:35:31 PM	R99643
SM2320B: ALKALINITY						Analyst	: RBC
Bicarbonate (As CaCO3)	102.2	20.00		mg/L Ca	a 1	9/12/2023 3:35:31 PM	R99643
Carbonate (As CaCO3)	8.960	2.000		mg/L Ca	a 1	9/12/2023 3:35:31 PM	R99643
Total Alkalinity (as CaCO3)	111.2	20.00		mg/L Ca	a 1	9/12/2023 3:35:31 PM	R99643
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: MCA
Total Dissolved Solids	210	100	D	mg/L	1	9/15/2023 8:13:00 AM	77481
SM4500-H+B / 9040C: PH						Analyst	: RBC
рН	8.78		*H	pH units	s 1	9/12/2023 3:35:31 PM	R99643
EPA METHOD 200.7: METALS						Analyst	: JRR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

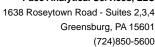
Lab Order **2309474**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/25/2023

CLIENT: Hydro Resources RM Client Sample ID: Zone 1

Project: Rio Rancho Well 9R **Collection Date:** 9/9/2023 4:55:00 PM


Lab ID: 2309474-001 Matrix: AQUEOUS Received Date: 9/11/2023 10:51:00 AM Analyses Result **RL Oual Units DF** Date Analyzed **Batch EPA METHOD 200.7: METALS** Analyst: JRR 9/14/2023 11:26:16 AM 77455 Calcium 5.0 1.0 mg/L 1 Magnesium ND 1.0 mg/L 9/14/2023 11:26:16 AM

77455 Potassium 2.0 9/14/2023 11:26:16 AM 77455 1.0 mg/L Sodium 71 mg/L 9/14/2023 11:26:16 AM 77455 1.0 **EPA METHOD 245.1: MERCURY** Analyst: tem Mercury ND 0.00020 9/19/2023 4:05:44 PM 77563 mg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

September 20, 2023

Andy Freeman Hall Environmental 4901 Hawkins NE Albuquerque, NM 87109

RE: Project: 2309474

Pace Project No.: 30621494

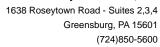
Dear Andy Freeman:

Enclosed are the analytical results for sample(s) received by the laboratory on September 12, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carla Cmar carla.cmar@pacelabs.com (724)850-5600 Project Manager

Enclosures

cc: Ms. Jackie Ball, Hall Environmental Michelle Garcia, Hall Environmental 1845-Hall Reporting

CERTIFICATIONS

Project: 2309474
Pace Project No.: 30621494

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

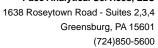
Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

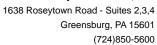

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

REPORT OF LABORATORY ANALYSIS

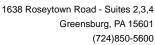


SAMPLE SUMMARY

Project: 2309474
Pace Project No.: 30621494

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30621494001	2309474-001D_Zone 1	Water	09/09/23 04:55	09/12/23 10:20

REPORT OF LABORATORY ANALYSIS



SAMPLE ANALYTE COUNT

Project: 2309474
Pace Project No.: 30621494

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30621494001	2309474-001D_Zone 1	EPA 900.0	KET	2	PASI-PA
		EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

Project: 2309474
Pace Project No.: 30621494

Method: EPA 900.0

Description:900.0 Gross Alpha/BetaClient:Hall EnvironmentalDate:September 20, 2023

General Information:

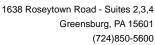
1 sample was analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 2309474
Pace Project No.: 30621494

Method: EPA 903.1

Description:903.1 Radium 226Client:Hall EnvironmentalDate:September 20, 2023

General Information:

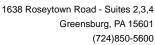
1 sample was analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 2309474
Pace Project No.: 30621494

Method: EPA 904.0

Description:904.0 Radium 228Client:Hall EnvironmentalDate:September 20, 2023

General Information:

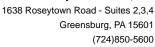
1 sample was analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 2309474
Pace Project No.: 30621494

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Hall EnvironmentalDate:September 20, 2023

General Information:

1 sample was analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2309474
Pace Project No.: 30621494

Sample: 2309474-001D_Zone 1 PWS:	Lab ID: 30621 4 Site ID:	94001 Collected: 09/09/23 04:55 Sample Type:	Received:	09/12/23 10:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Gross Alpha	EPA 900.0	2.40 ± 1.61 (2.66) C:NA T:NA	pCi/L	09/19/23 08:26	6 12587-46-1	
Gross Beta	EPA 900.0	1.87 ± 0.873 (1.34) C:NA T:NA	pCi/L	09/19/23 08:26	6 12587-47-2	
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.246 ± 0.580 (1.08) C:NA T:93%	pCi/L	09/20/23 12:15	5 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.0839 ± 0.345 (0.783) C:80% T:83%	pCi/L	09/20/23 11:28	3 15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.330 ± 0.925 (1.86)	pCi/L	09/20/23 15:20	7440-14-4	

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2309474
Pace Project No.: 30621494

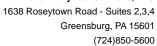
QC Batch: 615393 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30621494001

METHOD BLANK: 2996877 Matrix: Water


Associated Lab Samples: 30621494001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.180 ± 0.275 (0.442) C:NA T:88%
 pCi/L
 09/20/23 12:15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2309474 Pace Project No.:

30621494

QC Batch:

615397

QC Batch Method: EPA 904.0 Analysis Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples: 30621494001

METHOD BLANK: 2996886

Matrix: Water

Associated Lab Samples: 30621494001

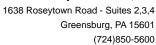
Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers


Radium-228

0.181 ± 0.334 (0.733) C:82% T:81%

pCi/L

09/20/23 11:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2309474
Pace Project No.: 30621494

QC Batch: 615146 Analysis Method: EPA 900.0

QC Batch Method: EPA 900.0 Analysis Description: 900.0 Gross Alpha/Beta

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30621494001

METHOD BLANK: 2995418 Matrix: Water

Associated Lab Samples: 30621494001

Parameter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Gross Alpha	1.17 ± 1.03 (1.85) C:NA T:NA	pCi/L	09/18/23 08:39	
Gross Beta	-0.225 ± 0.635 (1.59) C:NA T:NA	pCi/L	09/18/23 08:39	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2309474
Pace Project No.: 30621494

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 09/20/2023 03:22 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

REPORT OF LABORATORY ANALYSIS

HALL ENVIRONMENTAL

ANALYSIS LABORATORY

CHAIN OF CUSTODY RECORD TWEE 1

Hall Environmental Analysis Laboratory

4901 Hankins NE Albuquerque, NAI 87109 TEL: 505-345-3975 F.41: 505-345-410" Website: unthallenvironmental.com

SUBO	SUB CONTRATOR: Pace-Greensburg	Greensburg COMPANY:	Pace Analytical Services, Inc.	es, Inc.	PHONE	(724) 850-5600	FAN. (724) 850-5601	
ADDRESS		1638 Roseytown Rd Ste 2,3,4			ACCOUNT #:		ENIAL).	
CITY, 5	STATE, ZIP. Green	CITY, STATE, ZIP. Greensburg, PA 15601				Vo. Total to separate the second seco		
ITEM	SAMPLE	CHENT SAMPLE ID	BOTTLE	CO	COLLECTION	# CONTAINER	ANALYTICAL COMMENTS	
I	23(Zone 1	Š	9/9/20		4 Gross Alpha, Gross Beta,	4 Gross Aipha, Gross Beta, Ra 226/228- ** 3 DAY TAT **	<u>0</u>

WO#:30621494

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

					j	
Relinquished By: Context	Date: 9/11/2023	9/11/2023 Time: 11:27 AM	Received By: A	ESICAL.	Per !	ORT TRANSMITTAL DESIRED:
Relinquished By:	Date:	Time:	Receifed By:	Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
						V INC FIGUR ONLY
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	
						Temp of samples 'Attempt to Cool ? V
TAT: Standa	Standard [RUSH	Next BD □ 2nd BD □	□ 3rd BD □		
						Comments:

Page 17/age 32 of 16

DC#_Title: ENV-FRM- Pittsburgh	GBUI	₹-008	38 v0:	5_Sample Co	#:306	21494
Pace Effective Date: 07/06/2023				PM: CLI	CMC [NT: HALL EN\	Oue Date: 10/03/23 /IRON
Client Name: Hall Environmen	Toly					
Courier: 🛭 Fed Ex 🗌 UPS 📮 USPS 🗎 Client	□ Com	mercia	al 🗆 P	ace 🗍 Other		Initial / Date
Tracking Number: <u>1733</u> 746	15	93	ブブ		Examine	d By: UR 9/13-2/5
Custody Seal on Cooler/Box Present: Y	es ØN e of lo			Intact:	⊠No Labeled E	sy: VA 9-13-23
Cooler Temperature: Observed Temp	<u>wanner</u>	۰C	Corre	ction Factor:	oC Final	Temp:•C
Temp should be above freezing to 6°C						
	1	1	T	pH paper Lot#	D.P.D. Re	sidual Chlorine Lot #
Comments:	Yes	No	NA	10,10831	<u> </u>	
Chain of Custody Present	13		ļ	1.		
Chain of Custody Filled Out:	<u></u>	4	 	2.		
-Were client corrections present on COC	17	X	ļ			<u> </u>
Chain of Custody Relinquished	X	4	<u> </u>	3.		
Sample Labels match COC:	4	_	├	4. 5.		
Sample Labels match COC: -Includes date/time/ID		<u> </u>	<u> </u>	3.	***************************************	
	VT					
	1 (V	Γ	1	6		
Samples Arrived within Hold Time:	<u> </u>			6. 7.		
Short Hold Time Analysis (<72hr remaining):		X		'·		
Rush Turn Around Time Requested:	X	<u>' </u>		8. 3 Jay 9	14	
Sufficient Volume:	X			9.	<i>y</i> 1	
Correct Containers Used:	1		l	10.		
-Pace Containers Used		X	 			
Containers Intact:	X	1 -	ļ —	11.		
Orthophosphate field filtered:			X	12.		
Hex Cr Aqueous samples field filtered:			X	13.		
Organic Samples checked for dechlorination	1		X	14:		
Filtered volume received for dissolved tests:			X	15:		
All containers checked for preservation:	X			16.		
exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix				pH2		
All containers meet method preservation requirements:	X			Initial when Completed Lot# of added	Date/Time of Preservation	· ·
	1			Preservative		
8260C/D: Headspace in VOA Vials (> 6mm)			X	17.		
624.1: Headspace in VOA Vials (0mm)			火	18.		
Trip Blank Present:	ار	İ	人	Trip blank o	istody seal preser	nt? YES or NO
Rad Samples Screened < 0.5 mrem/hr.				Initial when completed	Date: 4/10/6	Survey Meter SN: 156 3
Comments:						

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Qualtrax ID: 55680

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects Effective Date: 1/11/2023

กเอย СN Other ISGN GIN BUDE ZPLC Profile Number MCKN WGFU Notes YOAK บอง Vials T65V Н6ЭЛ S69a ยьзก ᡖ **BP35** ВРЗИ Plastic Page ВЬЗС BP2N SSAB UI98 MI48 TSOA Amber Glass NGĐA U£Đ∀ **SEÐ∀** HFDA Container Codes 5 XirixM Sample Line Item Client Site

	EZI 5g Encore	VOAK Kit Volatile Solid	1 Wipe/Swab	ZPLC Siploc Bag		WT Water	SL Solid	OL Non-Aq Liquid	WP Wipe			Page 1 of 1
Plastic/Misc.	1 gallon cubitainer	1/2 gallon cubitainer	120mL coliform Na Thiosulfate	1L plastic HNO3	1L plastic unpreserved	250mL plastic H2SO4	250mL plastic HNO3	250mL plastic unpreserved	250mL plastic NAOH	OmL plastic H2SO4	——J0mL plastic unpreserved	
	GCUB	12GN	SP5T	BP1N	BP1U	BP3S	BP3N	BP3U	BP3C	76	Due Date: 10/03/23	
			ıte								Due Dat	ENVIRON
	40mL amber VOA vial H2SO4	40mL clear VOA vial	40mL clear VOA vial Na Thiosulfate	40mL clear VOA vial HCl	4oz amber wide jar	4oz wide jar unpreserved	500mL clear glass unpreserved	500mL amber glass unpreserved	8oz wide jar unpreserved	General (0# : 30621 494	PM: CHC	CLIENT: HALL ENVIRON
Glass	DG9S	VG9U	VG9T	VG9H	JGFU	WGFU	BG2U	AG2U	WGKU	GN		
	1 Gallon Jug with HNO3	100mL amber glass unpreserved	100mL amber glass Na Thiosulfate	1 Gallon Jug	1L amber glass H2SO4	1L amber glass HCI	1L amber glass NA Thiosulfate	1L clear glass unpreserved	250mL amber glass H2SO4	250mL amber glass unpreserved	·	Qualtrax ID: 55678
	NL9	AG5U	AG5T	NLD.	AG1S	AG1H	AG1T	BG4JU	AGS	ACCE	ag£3	8 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client:	Hydro Resources RM
Project:	Rio Rancho Well 9R

Sample ID: MB-77455	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	200.7: Metals			
Client ID: PBW	Batch	h ID: 774	155	F	RunNo: 9	9675				
Prep Date: 9/12/2023	Analysis D	Date: 9/	13/2023	(SeqNo: 3	641351	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Sodium	ND	1.0								
Sample ID: LCSLL-77455	SampT	Гуре: LC	SLL	Tes	tCode: El	PA Method	200.7: Metals			

Sample ID: LCSLL-77455	SampT	ype: LC	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: BatchQC	Batch	n ID: 77 4	155	F	RunNo: 99	9675				
Prep Date: 9/12/2023	Analysis D	ate: 9/	13/2023	5	SeqNo: 36	641352	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0	0.5000	0	95.0	50	150			
Magnesium	ND	1.0	0.5000	0	98.5	50	150			
Potassium	ND	1.0	0.5000	0	66.8	50	150			
Sodium	ND	1.0	0.5000	0	94.8	50	150			

Sample ID: LCS-77455	SampT	ype: LC	S	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: LCSW	Batch	n ID: 77 4	155	F	RunNo: 99	9675				
Prep Date: 9/12/2023	Analysis D)ate: 9/	13/2023	5	SeqNo: 36	641353	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	48	1.0	50.00	0	96.7	85	115			
Magnesium	49	1.0	50.00	0	97.5	85	115			
Potassium	49	1.0	50.00	0	97.1	85	115			
Sodium	49	1.0	50.00	0	97.2	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2309474**

25-Sep-23

Client:	Hydro Resources RM
Project:	Rio Rancho Well 9R

Sample ID: MB-77455

Client ID:	PBW	Bat	ch ID: 774	155	F	RunNo: 9	9752				
Prep Date:	9/12/2023	Analysis	Date: 9/	15/2023	8	SeqNo: 30	646088	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	0.0010								
Barium		ND	0.0010								
Beryllium		ND	0.00050								
Cadmium		ND	0.00050								
Chromium		ND	0.0010								
Copper		ND	0.00050								
Lead		ND	0.00050								
Nickel		ND	0.00050								
Selenium		ND	0.0010								
Thallium		ND	0.00025								
		ND	0.00050								
Uranium	MSLCSLL-77455		0.00050 Type: LC	SLL	Tes	tCode: EI	PA 200.8: M	etals			
Uranium	MSLCSLL-77455 BatchQC	Samp				tCode: El RunNo: 9 9		etals			
Uranium Sample ID:		Sam _l Bat	оТуре: LC	155	F		9752	etals Units: mg/L			
Uranium Sample ID: Client ID:	BatchQC	Sam _l Bat	oType: LC	155	F	RunNo: 9	9752		%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte	BatchQC	Samp Bat Analysis	oType: LC ch ID: 774 Date: 9/	155 15/2023	F	RunNo: 99 SeqNo: 36	9752 646089	Units: mg/L	%RPD	RPDLimit	Qual
Uranium Sample ID: Client ID: Prep Date:	BatchQC	Samp Bat Analysis Result	DType: LC ch ID: 77 4 Date: 9 /	155 15/2023 SPK value	SPK Ref Val	RunNo: 99 SeqNo: 36 %REC	9752 646089 LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Antimony	BatchQC	Samp Bat Analysis Result 0.0011	DType: LC ch ID: 77 4 Date: 9 / PQL 0.0010	455 15/2023 SPK value 0.001000	SPK Ref Val	RunNo: 9 9 SeqNo: 3 0 %REC 110	9752 646089 LowLimit 50	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Antimony Barium Cadmium	BatchQC	Samp Bat Analysis Result 0.0011 ND	DType: LC ch ID: 774 Date: 9/ PQL 0.0010 0.0010	355 15/2023 SPK value 0.001000 0.001000	SPK Ref Val 0 0	RunNo: 99 SeqNo: 36 **REC 110 92.5	9752 646089 LowLimit 50 50	Units: mg/L HighLimit 150 150	%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Antimony Barium	BatchQC	Samp Bat Analysis Result 0.0011 ND	DType: LC ch ID: 772 Date: 9/- PQL 0.0010 0.0010 0.00050	355 15/2023 SPK value 0.001000 0.001000 0.0005000	SPK Ref Val 0 0 0	RunNo: 99 SeqNo: 36	9752 646089 LowLimit 50 50 50	Units: mg/L HighLimit 150 150 150	%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Antimony Barium Cadmium Chromium	BatchQC	Samp Bat Analysis Result 0.0011 ND ND	Date: 9/- Date: 9/- 0.0010 0.00050 0.0010	SPK value 0.001000 0.001000 0.0005000 0.001000	SPK Ref Val 0 0 0 0	RunNo: 99 SeqNo: 36 **REC 110 92.5 82.0 95.5	9752 646089 LowLimit 50 50 50 50	Units: mg/L HighLimit 150 150 150 150	%RPD	RPDLimit	Qual

TestCode: EPA 200.8: Metals

Client ID:	BatchQC	Bate	ch ID: 774	155	F	RunNo: 99	9752				
Prep Date:	9/12/2023	Analysis	Date: 9/1	15/2023	٤	SeqNo: 36	346090	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Beryllium	<u>, </u>	ND	0.00050	0.0005000	0	63.0	50	150			
Copper		0.00059	0.00050	0.0005000	0	118	50	150			
Nickel		ND	0.00050	0.0005000	0	94.3	50	150			
Thallium		0.00026	0.00025	0.0002500	0	103	50	150			

Sample ID: MSLCS-77455	SampType: LCS	TestCode: EPA 200.8: Metals	
Client ID: LCSW	Batch ID: 77455	RunNo: 99752	
Prep Date: 9/12/2023	Analysis Date: 9/15/2023	SeqNo: 3646091 Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit	%RPD RPDLimit Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 2309474

25-Sep-23

Client: Hydro Resources RM **Project:** Rio Rancho Well 9R

Sample ID:	MSLCS-77455	SampType: LCS			Tes	TestCode: EPA 200.8: Metals					
Client ID:	LCSW	Batch ID: 77455			RunNo: 99752						
Prep Date:	9/12/2023	Analysis Date: 9/15/2023		SeqNo: 3646091			Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		0.025	0.0010	0.02500	0	98.8	85	115			
Barium		0.025	0.0010	0.02500	0	100	85	115			
Beryllium		0.024	0.00050	0.02500	0	96.1	85	115			
Cadmium		0.012	0.00050	0.01250	0	97.5	85	115			
Chromium		0.023	0.0010	0.02500	0	93.5	85	115			
Copper		0.024	0.00050	0.02500	0	94.9	85	115			
Lead		0.012	0.00050	0.01250	0	97.3	85	115			
Nickel		0.023	0.00050	0.02500	0	93.4	85	115			
Selenium		0.027	0.0010	0.02500	0	107	85	115			
Thallium		0.012	0.00025	0.01250	0	98.4	85	115			
Uranium		0.012	0.00050	0.01250	0	97.6	85	115			
Sample ID:	MB-77455	Samp	Туре: МВ	BLK	Tes	tCode: EF	PA 200.8: M				
Client ID:	PBW	Bat	ch ID: 77 4	155	RunNo: 99806						
Prep Date:	9/12/2023	Analysis	Date: 9/	19/2023	S	SeqNo: 36	648663	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.00050								
Sample ID:	MSLCSLL-TL-7	7455 Samp	SampType: LCSLL TestCode: EPA 200.8: Metals						-		
Client ID:	BatchQC	Bat	ch ID: 774	155	F	RunNo: 99806					
Prep Date:	9/12/2023	Analysis	Date: 9/	19/2023	5	SeqNo: 36	648664	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.00050	0.0005000	0	64.2	50	150			

Sample ID:	MSLCS-77455	Samp	Туре: LC	S	Tes	tCode: EF	PA 200.8: M	etals			
Client ID:	LCSW	Batch ID: 77455			RunNo: 99806						
Prep Date:	9/12/2023	Analysis	Date: 9/	19/2023	5	SeqNo: 36	648665	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.024	0.00050	0.02500	0	97.7	85	115			

Qualifiers: Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit RL

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client: Hydro Resources RM
Project: Rio Rancho Well 9R

Sample ID: MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals

Client ID: PBW Batch ID: B99768 RunNo: 99768

Prep Date: Analysis Date: 9/18/2023 SeqNo: 3646419 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic ND 0.00050

Sample ID: LCSLLB SampType: LCSLL TestCode: EPA 200.8: Dissolved Metals

Client ID: BatchQC Batch ID: B99768 RunNo: 99768

Prep Date: Analysis Date: 9/18/2023 SeqNo: 3646421 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic ND 0.00050 0.0005000 0 94.8 50 150

Sample ID: LCS SampType: LCS TestCode: EPA 200.8: Dissolved Metals

Client ID: LCSW Batch ID: B99768 RunNo: 99768

Prep Date: Analysis Date: 9/18/2023 SeqNo: 3646422 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.024 0.00050 0.02500 0 94.6 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client: Hydro Resources RM
Project: Rio Rancho Well 9R

Sample ID: MB-77563 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: **PBW** Batch ID: **77563** RunNo: **99815**

Prep Date: 9/18/2023 Analysis Date: 9/19/2023 SeqNo: 3648939 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-77563 SampType: LCSLL TestCode: EPA Method 245.1: Mercury

Client ID: BatchQC Batch ID: 77563 RunNo: 99815

Prep Date: 9/18/2023 Analysis Date: 9/19/2023 SeqNo: 3648940 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 58.9 50 150

Sample ID: LCS-77563 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 77563 RunNo: 99815

Prep Date: 9/18/2023 Analysis Date: 9/19/2023 SeqNo: 3648941 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0050 0.00020 0.005000 0 101 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 2309474

25-Sep-23

Client: Hydro Resources RM **Project:** Rio Rancho Well 9R

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R99646 RunNo: 99646 Prep Date: Analysis Date: 9/12/2023 SeqNo: 3640219 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride ND 0.10 ND 0.50

Chloride Sulfate ND 0.50

Sample ID: LCS	SampType: LCS			Tes	tCode: El	PA Method				
Client ID: LCSW	Batch ID: R99646			F	RunNo: 9	9646				
Prep Date:	Analysis [Date: 9/	12/2023	SeqNo: 3640227			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.47	0.10	0.5000	0	94.9	90	110			
Chloride	4.6	0.50	5.000	0	92.0	90	110			
Sulfate	93	0.50	10.00	0	93.2	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client: Hydro Resources RM
Project: Rio Rancho Well 9R

Sample ID: LCS-1 98.7uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R99643 RunNo: 99643

Prep Date: Analysis Date: 9/12/2023 SeqNo: 3640094 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 98.70 0 102 85 115

Sample ID: LCS-2 98.7uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R99643 RunNo: 99643

100

Prep Date: Analysis Date: 9/12/2023 SeqNo: 3640120 Units: µmhos/cm

98.70

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

102

115

Qualifiers:

Conductivity

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client: Hydro Resources RM
Project: Rio Rancho Well 9R

Sample ID: MB-1 Alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R99643 RunNo: 99643

Prep Date: Analysis Date: 9/12/2023 SeqNo: 3640045 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-1 Alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R99643 RunNo: 99643

Prep Date: Analysis Date: 9/12/2023 SeqNo: 3640046 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.80 20.00 80.00 0 98.5 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client: Hydro Resources RM
Project: Rio Rancho Well 9R

Sample ID: MB-77481 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 77481 RunNo: 99712

Prep Date: 9/13/2023 Analysis Date: 9/15/2023 SeqNo: 3643693 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 50.0

Sample ID: LCS-77481 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 77481 RunNo: 99712

Prep Date: 9/13/2023 Analysis Date: 9/15/2023 SeqNo: 3643694 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 50.0 1000 0 101 80 120

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309474**

25-Sep-23

Client: Hydro Resources RM
Project: Rio Rancho Well 9R

Sample ID: MB SampType: MBLK TestCode: EPA Method 180.1: Turbidity

Client ID: PBW Batch ID: R99588 RunNo: 99588

Prep Date: Analysis Date: 9/11/2023 SeqNo: 3637532 Units: NTU

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Turbidity ND 0.50

Sample ID: 2309474-001ADUP SampType: DUP TestCode: EPA Method 180.1: Turbidity

Client ID: Zone 1 Batch ID: R99588 RunNo: 99588

Prep Date: Analysis Date: 9/11/2023 SeqNo: 3637534 Units: NTU

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Turbidity 26 0.50 2.32 20 *

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Hydro Resource	es RM Work Order N	lumber: 2309474		RcptNo: 1	
Received By: Nancy Procto	9/11/2023 10:5	1:00 AM			
Completed By: Desiree Domin	nguez 9/11/2023 11:0	4:46 AM	TO		
Reviewed By:	9/11/2	3			
Chain of Custody					
1. Is Chain of Custody complete?	•	Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered	?	<u>Client</u>			
Log In 3. Was an attempt made to cool	the samples?	Yes 🗸	No 🗌	na 🗆	
4. Were all samples received at a	temperature of >0° C to 6.0°C	Yes 🗹	No 🗌	na 🗆	
5. Sample(s) in proper container(s)?	Yes 🗸	No 🗌		
6. Sufficient sample volume for in	dicated test(s)?	Yes 🗹	No 🗌		
7 Are samples (except VOA and		Yes 🗹	No 🗌		
8. Was preservative added to bot		Yes	No 🗹	NA 🗆	
9. Received at least 1 vial with he	adspace <1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sample containers re	eceived broken?	Yes 🗌	No 🗹	# of preserved	
			-	bottles checked	
 Does paperwork match bottle la (Note discrepancies on chain of 		Yes 🔽	No L	for pH: (<> or >1)	2 unless noted)
12. Are matrices correctly identified		Yes 🗹	No 🗆	Adjusted?	
13. Is it clear what analyses were r	·	Yes 🗹	No 🗌	-	1 1
14. Were all holding times able to l (If no, notify customer for author	be met?	Yes 🗹	No 🗆	Checked by:	ma/11/2
Special Handling (if applic	•				
15. Was client notified of all discre		Yes 🗌	No 🗌	na 🗹	
Person Notified:	and the state of t	Date:			
By Whom:			Phone Fax	☐ In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:		decomposite.			
	Condition Seal Intact Seal	No Seal Date	Signed By		

Chain of Custody Boord	Turn-Around Time:	
Cilalii-Oi-Custouy Necolu		HALL ENVIRONMENTAL
Olient: Huston Resources	□ Standard ⊠ Rush	ANALYSIS LABORATORY
	Project Name:	www.hallenvironmental.com
Mailing Address: 13, 27 C, 20 18 C,	Rio Ranche Well aR	4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Drac # 175 2017		Analysis
omoil or Fox#:	Project Manager: To Supply	*O
QA/QC Package:	\cap	
☐ Standard ☐ Level 4 (Full Validation)		90 / PC
Accreditation: Az Compliance	Sampler:	(10 / DFG (10 /
	On Ice: Yes No	8/88 8/86 10 3, 10 8
TA EDD (Type) POF EXCCI	# of Coolers: (/oy,	odelio boodetal B10 B10 B10 B10 B10 B10 B10 B10 B10 B10
	Cooler Temp(including cF): 1,2 +0,1= 1,3 (°C)	esticestifcD
	Orogon	H:80 H Pd Hs b RA 1 F, E 50 (/ 70 (§
Date Time Matrix Sample Name	Type and # Type 3304474	HGH 826 BCI PAH PAH BCI 808 808
11. SK	I NO3:	×
1 1	-	*
	3	
	The second secon	
	The state of the s	and the residence of the second
	AND THE ADMINISTRATION OF THE PROPERTY OF THE	
	The state of the s	
	Received by: Via: Date Time	Remarks: 15e detection limits that are
99/23 17:16 (MARSA) (1/2)	- Arr	below NMED diraking water standards
Time: Relinquished by:	Received by: Via: Date Time	
	(CDQ (0.5)	In a notated on the analytical report

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

DAILY FIELD LOG

took alpha and bet	256-225 miles
Marian.	1080).
le ad	· Mallin
Selfor.m.	bodost.
· Mercul	. Oranim
Cadmin	millery.
wyjog,	(hosvice & Lotot) Sdissolvied)
mon fun,	9/02/:0/7.
(or pala)	(ZCII) shilos boulosilo loto I.
- My.	Ainterior (enductivity)
Hollus.	Shinh).
· Dicerbonate alkalinit	existly Honodis).
· Alkalining Las Callos	· Mordiness (all)
geongrah.	wy.
missotol.	mipos.
mismosh.	Colcins.
292 PLONA AP 11	Zone 1 - Rio Bareho We
	EOLOGIST: PROJECT:
	CLIVITY: CLIENT:
	DATE

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 01, 2023

Tyler Curtis

Hydro Resources RM 13207 County Road 18, Unit C

Fort Lupton, CO 80621 TEL: (303) 857-7540 FAX: (505) 856-6501

RE: Rio Ranch Well 9R OrderNo.: 2309974

Dear Tyler Curtis:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/18/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/1/2023

CLIENT: Hydro Resources RM Client Sample ID: Zone 3

 Project:
 Rio Ranch Well 9R
 Collection Date: 9/17/2023 8:12:00 AM

 Lab ID:
 2309974-001
 Matrix: AQUEOUS
 Received Date: 9/18/2023 9:18:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: DISSOLVED METALS						Analyst:	bcv
Arsenic	0.0072	0.00050		mg/L	1	9/25/2023 4:18:54 PM	B99993
EPA 200.8: METALS						Analyst	bcv
Antimony	ND	0.0010		mg/L	1	9/22/2023 12:22:01 PM	77619
Arsenic	0.017	0.00050	*	mg/L	1	9/22/2023 12:22:01 PM	77619
Barium	0.95	0.050		mg/L	50	9/26/2023 10:55:01 AM	77619
Beryllium	0.0038	0.00050		mg/L	1	9/22/2023 12:22:01 PM	77619
Cadmium	ND	0.00050		mg/L	1	9/22/2023 12:22:01 PM	77619
Chromium	0.083	0.0050		mg/L	5	9/26/2023 10:43:22 AM	77619
Copper	0.29	0.0050		mg/L	10	9/26/2023 10:52:06 AM	77619
Iron	37	1.0		mg/L	50	9/26/2023 10:55:01 AM	77619
Lead	0.029	0.0025	*	mg/L	5	9/26/2023 10:43:22 AM	77619
Manganese	0.72	0.050		mg/L	50	9/26/2023 10:55:01 AM	77619
Nickel	0.47	0.010	*	mg/L	20	9/27/2023 4:59:59 PM	77777
Selenium	0.0024	0.0010		mg/L	1	9/22/2023 12:22:01 PM	77619
Thallium	0.00033	0.00025		mg/L	1	9/22/2023 12:22:01 PM	77619
Uranium	0.0097	0.00050		mg/L	1	9/22/2023 12:22:01 PM	77619
SM2340B: HARDNESS						Analyst	JRR
Hardness as CaCO3	190	6.6		mg/L	1	9/21/2023	R99904
EPA METHOD 180.1: TURBIDITY						Analyst	KS
Turbidity	2000	50	*D	NTU	100	9/18/2023 7:03:00 PM	R99778
EPA METHOD 300.0: ANIONS						Analyst	SNS
Fluoride	0.92	0.50		mg/L	5	9/19/2023 11:21:43 AM	R99826
Chloride	7.7	2.5		mg/L	5	9/19/2023 11:21:43 AM	R99826
Sulfate	76	2.5		mg/L	5	9/19/2023 11:21:43 AM	R99826
SM2510B: SPECIFIC CONDUCTANCE						Analyst	RBC
Conductivity	480	10		µmhos/c	: 1	9/20/2023 2:42:36 PM	R99871
SM2320B: ALKALINITY						Analyst	RBC
Bicarbonate (As CaCO3)	136.0	20.00		mg/L Ca	1	9/20/2023 2:42:36 PM	R99871
Carbonate (As CaCO3)	4.000	2.000		mg/L Ca	1	9/20/2023 2:42:36 PM	R99871
Total Alkalinity (as CaCO3)	140.0	20.00		mg/L Ca	1	9/20/2023 2:42:36 PM	R99871
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	MCA
Total Dissolved Solids	1580	500	*D	mg/L	1	9/21/2023 3:28:00 PM	77640
SM4500-H+B / 9040C: PH						Analyst	RBC
рН	8.48		Н	pH units	1	9/20/2023 2:42:36 PM	R99871
EPA METHOD 200.7: METALS						Analyst	JRR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

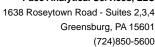
- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order 2309974

Date Reported: 10/1/2023

Hall Environmental Analysis Laboratory, Inc.


CLIENT: Hydro Resources RM Client Sample ID: Zone 3

Project: Rio Ranch Well 9R Collection Date: 9/17/2023 8:12:00 AM Lab ID: 2309974-001 Matrix: AQUEOUS Received Date: 9/18/2023 9:18:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: METALS					Analys	t: JRR
Calcium	49	1.0	mg/L	1	9/21/2023 1:39:45 PM	77619
Magnesium	15	1.0	mg/L	1	9/21/2023 1:39:45 PM	77619
Potassium	16	5.0	mg/L	5	9/22/2023 2:51:20 PM	77619
Sodium	110	5.0	mg/L	5	9/25/2023 1:04:29 PM	77619
EPA METHOD 245.1: MERCURY					Analys	t: tem
Mercury	ND	0.00020	mg/L	1	9/28/2023 1:55:02 PM	77794

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RLReporting Limit

September 29, 2023

Andy Freeman Hall Environmental 4901 Hawkins NE Albuquerque, NM 87109

RE: Project: 2309974

Pace Project No.: 30623589

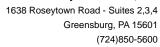
Dear Andy Freeman:

Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carla Cmar carla.cmar@pacelabs.com (724)850-5600 Project Manager

Enclosures

cc: Ms. Jackie Ball, Hall Environmental Michelle Garcia, Hall Environmental 1845-Hall Reporting

CERTIFICATIONS

Project: 2309974
Pace Project No.: 30623589

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

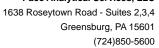
Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358

Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

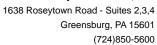

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

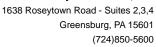
Wisconsin Approve List for Rad



SAMPLE SUMMARY

Project: 2309974
Pace Project No.: 30623589

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30623589001	2309974-001D Zone 3	Water	09/17/23 08:12	09/20/23 09:20



SAMPLE ANALYTE COUNT

Project: 2309974
Pace Project No.: 30623589

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30623589001	2309974-001D Zone 3	EPA 900.0	REH1	2	PASI-PA
		EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: 2309974
Pace Project No.: 30623589

Method: EPA 900.0

Description:900.0 Gross Alpha/BetaClient:Hall EnvironmentalDate:September 29, 2023

General Information:

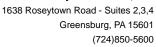
1 sample was analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 2309974
Pace Project No.: 30623589

Method: EPA 903.1

Description:903.1 Radium 226Client:Hall EnvironmentalDate:September 29, 2023

General Information:

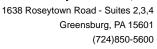
1 sample was analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 2309974
Pace Project No.: 30623589

Method: EPA 904.0

Description:904.0 Radium 228Client:Hall EnvironmentalDate:September 29, 2023

General Information:

1 sample was analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

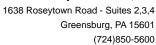
Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:


This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2309974
Pace Project No.: 30623589

Sample: 2309974-001D Zone 3 PWS:	Lab ID: 30623 Site ID:	589001 Collected: 09/17/23 08:12 Sample Type:	Received:	09/20/23 09:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg		•	•	
Gross Alpha	EPA 900.0	41.7 ± 13.4 (15.0) C:NA T:NA	pCi/L	09/27/23 18:5	1 12587-46-1	
Gross Beta	EPA 900.0	21.0 ± 6.22 (5.54) C:NA T:NA	pCi/L	09/27/23 18:5	1 12587-47-2	
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.465 ± 0.707 (1.22) C:NA T:91%	pCi/L	09/26/23 12:24	4 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.702 ± 0.382 (0.661) C:79% T:81%	pCi/L	09/27/23 11:05	5 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2309974
Pace Project No.: 30623589

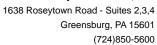
QC Batch: 617447 Analysis Method: EPA 900.0

QC Batch Method: EPA 900.0 Analysis Description: 900.0 Gross Alpha/Beta

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30623589001

METHOD BLANK: 3007458 Matrix: Water


Associated Lab Samples: 30623589001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Gross Alpha
 0.482 ± 0.954 (2.20) C:NA T:NA
 pCi/L
 09/29/23 08:08

 Gross Beta
 0.217 ± 0.808 (1.89) C:NA T:NA
 pCi/L
 09/29/23 08:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

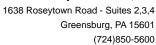
Project: 2309974
Pace Project No.: 30623589

QC Batch: 617090 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30623589001


METHOD BLANK: 3005523 Matrix: Water

Associated Lab Samples: 30623589001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.200 ± 0.347 (0.620) C:NA T:87%
 pCi/L
 09/26/23 12:10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

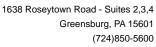
Project: 2309974
Pace Project No.: 30623589

QC Batch: 617091 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30623589001


METHOD BLANK: 3005526 Matrix: Water

Associated Lab Samples: 30623589001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 -0.301 ± 0.264 (0.695) C:77% T:83%
 pCi/L
 09/27/23 11:02

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2309974
Pace Project No.: 30623589

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 09/29/2023 01:14 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY RECORD FAGE 1

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory

4901 Hawkins NE

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Pace Analytical Services, Inc. PHONE.		
1620 Danaston D. C. A. A.	PHONE. (724) 850-5600	109\$-0\$\$ (TCL)
AUSO MOSCYLOW II NU SIE 2,5,4	EMAIL:	
CITY, STATE, ZIP: Greensburg, PA 15601		The second secon
ITEM SAMPLE CLIENT SAMPLE ID TYPE BOTTLE COLLECTION Z TYPE MATRIX DATE	COLLECTION	COMMENTS
1 2309974-001D Zone 3 1.12.00 AM 4 Gross Alpi	PEHNO Aqueous 9/17/2023 8.12:00 AM 4 Gross Alpha, Gross Beta, Ra 226/228- ** 5 DAY TAT **	YY TAT ** 60 (

WO#: 30623589

Received by Pace Greensburg
Therm ID — Corr Factor +/.
Receipt Temp
Corrected Temp
Correct Preservation (*) N

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LABID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 9/18/2023	Tune: 4:06 PM	773	Sta State Miles	3000	or Lig	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date:	Tune:	d By:		Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
						••••	TOTAL TOTAL
Relinquished By:	Date:	Time:	Received By:		Date:	Time:	FOR LAB COR ONL 1
TAT: Stand	Standard 🗌	RUSH	Next BD	OB Put	3rd BD		Temp of samples C Affempt to Cool ?
							Comments:
15							

0	DC#_Title: ENV-FRM- Pittsburgh	GBUI	R-008	38 v0:	-		
Pace	Effective Date: 07/06/2023					: 3062	23589 e Date: 09/27/23
Client Name:	Hall				PM: CMC	HALL ENVI	
Tracking Number		<u> </u>	<u>7 </u>	Seals	ntact: Yes	□No Labele	ned By: p5 9 12012
Thermometer U Cooler Tempera Temp should be abo	ture: Observed Temp	e of lo			tion Factor:		al Temp:°C
Comments:		Yes	No	NA	100312-(J D.P.D. 1	residual Ciliolille Lot #
Chain of Custod	v Present		1		1,		
Chain of Custod		-	1		2.		
· ·	corrections present on COC		-	1			
Chain of Custody			<u> </u>		3.		
Sampler Name 8	Signature on COC:		CELEGRAPHO		4.		
Sample Labels m					5.		
-Includes da	te/time/ID					,	
Matrix:		し	JT				
Samples Arrived	within Hold Time:	-	1		6,		
Short Hold Time	Analysis (<72hr				7.		
remaining):					- 040 3/5 0		
	nd Time Requested:			60	8.917-0133	·	
Sufficient Volum	· · · · · · · · · · · · · · · · · · ·	9			9.		
Correct Containe -Pace Contai		-			10.	······································	
-Pace Contai			-		11.		
Orthophosphate				THE PARTY OF THE P	12.		
	samples field filtered:			-	13.		
	checked for dechlorination		 	-	14:		
	eceived for dissolved tests:			-	15:		
	ecked for preservation:	Samura			16.		
exceptions: \	/OA, coliform, TOC, O&G, adon, non-aqueous matrix	<u> </u>	!		phes		
All containers me requirement	eet method preservation s:	-			Initial when completed	Date/Time Preservation	
					Lot# of added Preservative		
8260C/D : Headsp	pace in VOA Vials (> 6mm)		1		17.		
624.1: Headspac	e in VOA Vials (0mm)			_	18.		
Trip Blank Presen	t:				Trip blank cu	stody seal pres	ent? YES or NO
Rad Samples Scre	ened <0.5 mrem/hr.	/			Initial when PS	Date: Olacol	Survey Meler 1563 SN:
•						1,00	7-3 Olv.

Note: For NC compilance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects Effective Date: 1/11/2023

กเอย ВN Other ISGN GNN GCUB **SPLC** Profile Number Mekn MGFU Notes NOAK U69V Vials T69V Н6ЭЛ DG92 บยฯล ₽ **BP3S** ивча Page Plastic BP3C US98 8298 UIAB NIGB T3ĐA Amber Glass USDA 4309974 UEDA \$£9¥ **HFDA** Container Codes Matrix 5 Sample Line Item Client 001

		Glass				
N S J	1 Gallon Jug with HNO3	DG9S	40mL amber VOA vial H2SO4	<u> </u> C	GCUB	1 gall
AGSU	100mL amber glass unpreserved	VG9U	40mL clear VOA vial	7	12GN	1/2 q
AG5T	100mL amber glass Na Thiosulfate	VG9T	40mL clear VOA vial Na Thiosulfate	S	SP5T	120m
N O	1 Gallon Jug	VG9H	40mL clear VOA vial HCl	m	BP1N	11. pk
AG1S	1L amber glass H2SO4	JGFU	4oz amber wide jar	<u> </u>	BP1U	1 pk
AG1H	1L amber glass HCI	WGFU	4oz wide jar unpreserved	<u> </u>	BP3S	250m
AG1T	1L amber glass NA Thiosulfate	BG2U	500mL clear glass unpreserved	m	BP3N	250m
BG10	1L clear glass unpreserved	1 1000		ă	BP3U	250m
AG#S	250mL amber glass H2SO	<u> 38</u>	MU#:30623589	ă	BP3C	250m
AGÄL	250mL amber glass unpre:		20,10,00	<u> </u>	BP2S	500m
agé 3£	CLIENT	CLIENT: HALL ENVIRON	NVIRON	<u> </u>	BP2U	500m
3 of 15	Qualtrax ID: 55678		Analytical Services, LLC	vices, LLC		

	Plastic/Misc.	ö	
GCUB	1 gallon cubitainer	EZI	5g Encore
12GN	1/2 gallon cubitainer	VOAK	VOAK Kit Volatile Solid
SP5T	120mL coliform Na Thiosulfate	_	Wipe/Swab
BP1N	1L plastic HNO3	ZPLC	ZPLC Siploc Bag
BP1U	1L plastic unpreserved		
BP3S	250mL plastic H2SO4	ΜT	Water
BP3N	250mL plastic HNO3	SF	Solid
врзи	250mL plastic unpreserved	ᅙ	Non-Aq Liquid
BP3C	250mL plastic NAOH	WP	Wipe
BP2S	500mL plastic H2SO4		
BP2U	500mL plastic unpreserved		

Client:

Hall Environmental Analysis Laboratory, Inc.

Hydro Resources RM

WO#: **2309974**

01-Oct-23

Project:	Rio Ra	anch Well 9R									
Sample ID:	MB-77619	SampType: MI	BLK	TestCode: EPA Method 200.7: Metals							
Client ID:	PBW	Batch ID: 77	619	F	RunNo: 99	9904					
Prep Date:	9/19/2023	Analysis Date: 9/	5	SeqNo: 30	653342	Units: mg/L					
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium Magnesium		ND 1.0 ND 1.0									
Sample ID:	LCSLL-77619	SampType: LC	SLL	Tes	tCode: EF	PA Method	200.7: Metals				
Client ID:	BatchQC	Batch ID: 77	619	F	RunNo: 99	9904					
Prep Date:	9/19/2023	Analysis Date: 9/	21/2023	5	SeqNo: 30	653343	Units: mg/L				
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium		ND 1.0	0.5000	0	98.2	50	150				
Magnesium		ND 1.0	0.5000	0	100	50	150				
Sample ID:	LCS-77619	SampType: LC	Tes	tCode: EF	PA Method						
Client ID:	LCSW	Batch ID: 77	F	RunNo: 99	9904						
Prep Date:	9/19/2023	Analysis Date: 9/	5	SeqNo: 36	653344	Units: mg/L					
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium		49 1.0	50.00	0	97.2	85	115				
Magnesium		49 1.0	50.00	0	97.4	85	115				
Sample ID:	MB-77619	SampType: MI	BLK	TestCode: EPA Method 200.7: Metals							
Client ID:	PBW	Batch ID: 77	619	F	RunNo: 99	9942					
Prep Date:	9/19/2023	Analysis Date: 9/	22/2023	SeqNo: 3655543 U			Units: mg/L				
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Potassium		ND 1.0									
Sample ID:	LCSLL-77619	SampType: LC	SLL	TestCode: EPA Method 200.7: Metals							
Client ID:	BatchQC	Batch ID: 77	619	F	RunNo: 99	9942					
Prep Date:	9/19/2023	Analysis Date: 9/	22/2023	5	SeqNo: 30	655544	Units: mg/L				
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Potassium		ND 1.0	0.5000	0	118	50	150				
Sample ID:	LCS-77619	SampType: LC		Tes	tCode: EF	PA Method	200.7: Metals				
Client ID:	LCSW	Batch ID: 77	619	F	RunNo: 99	9942					
Prep Date:	9/19/2023	Analysis Date: 9/	22/2023	(SeqNo: 36	lo: 3655545 Units: n					
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Potassium		53 1.0	50.00	0	106	85	115				

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

0.0010

0.0010

0.00052 0.00050 0.0005000

0.001000

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID:	MB-77619	Samı	оТуре: МЕ	LK	TestCode: EPA 200.8: Metals						
Client ID:	PBW	Bat	ch ID: 776	619	F	RunNo: \$	99925				
Prep Date:	9/19/2023	Analysis	Date: 9/2	22/2023	;	SeqNo: 3	3654419	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	0.0010								
Arsenic		ND	0.00050								
Barium		ND	0.0010								
Beryllium		ND	0.00050								
Cadmium		ND	0.00050								
Copper		ND	0.00050								
Lead		ND	0.00050								
Selenium		ND	0.0010								
Thallium		ND	0.00025								
Uranium		ND	0.00050								
Sample ID:	MSLCSLL-77619	Sam	туре: LC	SLL	TestCode: EPA 200.8: Metals						
Client ID:	BatchQC	Bat	ch ID: 776	619	F	RunNo: 9	99925				
Prep Date:	9/19/2023	Analysis	Date: 9/2	22/2023	5	SeqNo: 3	3654420	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		0.0011	0.0010	0.001000	0	109	50	150			
Barium		ND	0.0010	0.001000	0	87.2	50	150			
Cadmium		ND	0.00050	0.0005000	0	80.9	50	150			
Lead		ND	0.00050	0.0005000	0	99.6	50	150			

Sample ID:	MSLCSLL-TL-77619 SampType: LCSLL				Tes	tCode: EF	PA 200.8: N				
Client ID:	BatchQC	Bat	ch ID: 776	619	F	RunNo: 99	9925				
Prep Date:	9/19/2023	Analysis	Date: 9/2	22/2023	5	SeqNo: 36	654421	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.00050	0.0005000	0	80.9	50	150			
Beryllium		0.00058	0.00050	0.0005000	0	115	50	150			
Copper		0.00053	0.00050	0.0005000	0	106	50	150			
Thallium	(0.00026	0.00025	0.0002500	0	103	50	150			

0

0

103

103

50

50

150

150

Sample ID: MSLCS-77619 SampType: LCS					Tes						
Client ID: LCS	: LCSW Batch ID: 77619					RunNo: 99	9925				
Prep Date: 9/1	19/2023	Analysis	Date: 9/2	22/2023	SeqNo: 3654422			Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Antimony		Result 0.025	PQL 0.0010	SPK value 0.02500	SPK Ref Val	%REC 98.3	LowLimit 85	HighLimit 115	%RPD	RPDLimit	Qual

Qualifiers:

Selenium

Uranium

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:

Hall Environmental Analysis Laboratory, Inc.

Hydro Resources RM

WO#: **2309974**

01-Oct-23

Project:	3	Rio Ranch Well 9R										
Sample ID:	MSLCS-77619	Samp	Туре: LC	s	Tes	tCode: EF						
Client ID:	LCSW	Bat	ch ID: 776	619	F	RunNo: 99	9925					
Prep Date:	9/19/2023	Analysis	Date: 9/2	22/2023	;	SeqNo: 36	654422	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium		0.025	0.0010	0.02500	0	99.7	85	115				
Beryllium		0.023	0.00050	0.02500	0	93.2	85	115				
Cadmium		0.012	0.00050	0.01250	0	94.0	85	115				
Copper		0.024	0.00050	0.02500	0	95.5	85	115				
Lead		0.012	0.00050	0.01250	0	96.9	85	115				
Selenium		0.024	0.0010	0.02500	0	95.6	85	115				
Thallium		0.012	0.00025	0.01250	0	97.5	85	115				
Uranium		0.012	0.00050	0.01250	0	98.6	85	115				
Sample ID:	MB-77619	SampType: MBLK Batch ID: 77619			Tes	tCode: EF	PA 200.8: M					
Client ID:	PBW				F	RunNo: 10	00025					
Prep Date:	9/19/2023	Analysis	Date: 9/2	26/2023	;	SeqNo: 3659700		Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chromium		ND	0.0010									
Iron		ND	0.020									
Manganese		ND	0.0010									
Sample ID:	MSLCSLL-77619	Samp	Туре: LC	SLL	TestCode: EPA 200.8: Metals							
Client ID:	BatchQC	Bat	ch ID: 776	619	F	RunNo: 100025						
Prep Date:	9/19/2023	Analysis	Date: 9/2	26/2023	;	SeqNo: 36	659701	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chromium		ND	0.0010	0.001000	0	99.0	50	150				
Iron		0.020	0.020	0.02000	0	102	50	150				
Manganese		ND	0.0010	0.001000	0	76.9	50	150				
Sample ID:	MSLCS-77619	Samp	Туре: LC	s	Tes	tCode: EF	PA 200.8: M	etals				
Client ID:	LCSW	Bat	ch ID: 776	619	F	RunNo: 10	00025					
Prep Date:	9/19/2023	Analysis	Date: 9/2	26/2023		SeqNo: 36	659705	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chromium		0.024	0.0010	0.02500	0	96.3	85	115	_			

Qualifiers:

Iron Manganese

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

0.025

0.0010

0.02500

B Analyte detected in the associated Method Blank

100

85

115

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB-77777 SampType: MBLK TestCode: EPA 200.8: Metals

Client ID: PBW Batch ID: 77777 RunNo: 100045

Prep Date: 9/26/2023 Analysis Date: 9/27/2023 SeqNo: 3661065 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nickel ND 0.00050

Sample ID: MSLCSLL-TL-77777 SampType: LCSLL TestCode: EPA 200.8: Metals

Client ID: BatchQC Batch ID: 77777 RunNo: 100045

Prep Date: 9/26/2023 Analysis Date: 9/27/2023 SeqNo: 3661067 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nickel ND 0.00050 0.0005000 0 67.4 50 150

Sample ID: MSLCS-77777 SampType: LCS TestCode: EPA 200.8: Metals

Client ID: LCSW Batch ID: 77777 RunNo: 100045

Prep Date: 9/26/2023 Analysis Date: 9/27/2023 SeqNo: 3661068 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nickel 0.023 0.00050 0.02500 0 91.7 85 115

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals

Client ID: PBW Batch ID: B99993 RunNo: 99993

Prep Date: Analysis Date: 9/25/2023 SeqNo: 3657703 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic ND 0.00050

Sample ID: LCSLL2 SampType: LCSLL TestCode: EPA 200.8: Dissolved Metals

Client ID: BatchQC Batch ID: B99993 RunNo: 99993

Prep Date: Analysis Date: 9/25/2023 SeqNo: 3657705 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic ND 0.00050 0.0005000 0 97.5 50 150

Sample ID: LCS SampType: LCS TestCode: EPA 200.8: Dissolved Metals

Client ID: LCSW Batch ID: B99993 RunNo: 99993

Prep Date: Analysis Date: 9/25/2023 SeqNo: 3657706 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.025 0.00050 0.02500 0 100 85 115

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB-77794 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: PBW Batch ID: 77794 RunNo: 100077

Prep Date: 9/27/2023 Analysis Date: 9/28/2023 SeqNo: 3661825 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-77794 SampType: LCSLL TestCode: EPA Method 245.1: Mercury

Client ID: BatchQC Batch ID: 77794 RunNo: 100077

Prep Date: 9/27/2023 Analysis Date: 9/28/2023 SeqNo: 3661826 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 77.3 50 150

Sample ID: LCS-77794 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 77794 RunNo: 100077

Prep Date: 9/27/2023 Analysis Date: 9/28/2023 SeqNo: 3661827 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 94.8 85 115

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID: PBW Batch ID: R99826 RunNo: 99826

Prep Date: Analysis Date: 9/19/2023 SeqNo: 3649581 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Fluoride
 ND
 0.10

 Chloride
 ND
 0.50

 Sulfate
 ND
 0.50

 Sample ID:
 LCS
 SampType:
 LCS
 TestCode:
 EPA Method 300.0:
 Anions

 Client ID:
 LCSW
 Batch ID:
 R99826
 RunNo:
 99826

 Prep Date:
 Analysis Date:
 9/19/2023
 SeqNo:
 3649587
 Units:
 mg/L

 Analyte
 Result
 PQL
 SPK value
 SPK Ref Val
 %REC
 LowLimit
 HighLimit
 %RPD
 RPDLimit
 Qual

 Fluoride
 0.48
 0.10
 0.5000
 0
 96.1
 90
 110

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit
Fluoride	0.48	0.10	0.5000	0	96.1	90	110
Chloride	4.5	0.50	5.000	0	90.9	90	110
Sulfate	9.3	0.50	10.00	0	93.3	90	110

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

2309974 WO#:

01-Oct-23

Client: Hydro Resources RM **Project:** Rio Ranch Well 9R

Sample ID: LCS-1 99.5uS eC

Zone 3

SampType: LCS

TestCode: SM2510B: Specific Conductance

85

TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R99871

RunNo: 99871

Prep Date:

Analysis Date: 9/20/2023

10

SeqNo: 3651649

Units: µmhos/cm

Qual

Analyte

Result **PQL** 100

Result

480

SPK value SPK Ref Val 99.50 0

%REC LowLimit HighLimit 115 **RPDLimit**

Conductivity

Client ID:

Prep Date:

Sample ID: 2309974-001A DUP

SampType: DUP

103

Batch ID: R99871

RunNo: 99871 SeqNo: 3651652

Units: µmhos/cm

Analyte

PQL

%REC

%RPD

RPDLimit

Qual

Conductivity

Analysis Date: 9/20/2023

10

SPK value SPK Ref Val

LowLimit

HighLimit

%RPD 0.229

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits Sample pH Not In Range

Reporting Limit RL

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: 2309974-001A DUP SampType: DUP TestCode: SM4500-H+B / 9040C: pH

Client ID: Zone 3 Batch ID: R99871 RunNo: 99871

Prep Date: Analysis Date: 9/20/2023 SeqNo: 3651672 Units: pH units

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

pH 8.51 *H

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB-1 Alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R99871 RunNo: 99871

Prep Date: Analysis Date: 9/20/2023 SeqNo: 3651614 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-1 Alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R99871 RunNo: 99871

Prep Date: Analysis Date: 9/20/2023 SeqNo: 3651615 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 79.56 20.00 80.00 0 99.4 90 110

Sample ID: 2309974-001A DUP SampType: DUP TestCode: SM2320B: Alkalinity

Client ID: Zone 3 Batch ID: R99871 RunNo: 99871

Prep Date: Analysis Date: 9/20/2023 SeqNo: 3651623 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 140.4 20.00 0.228 20

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB-77640 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 77640 RunNo: 99894

Prep Date: 9/20/2023 Analysis Date: 9/21/2023 SeqNo: 3652827 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 50.0

Sample ID: LCS-77640 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 77640 RunNo: 99894

Prep Date: 9/20/2023 Analysis Date: 9/21/2023 SeqNo: 3652828 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1040 50.0 1000 0 104 80 120

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309974**

01-Oct-23

Client: Hydro Resources RM
Project: Rio Ranch Well 9R

Sample ID: MB SampType: MBLK TestCode: EPA Method 180.1: Turbidity

Client ID: PBW Batch ID: R99778 RunNo: 99778

Prep Date: Analysis Date: 9/18/2023 SeqNo: 3647126 Units: NTU

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Turbidity ND 0.50

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Client Name:	Hydro Resou	ırces RM	Work Order N	lumber:	2309	974			RcptNo: 1	
Received By:	Steve McQ	uiston	9/18/2023 9:18	:00 AM			Ku	Make	min-	
Completed By:	Desiree Do	minguez	9/18/2023 4:02	:21 PM			TO			
Reviewed By:	Thall8	1/23					2 *			
Chain of Cus	tody									
1. Is Chain of Cu	ustody comple	ete?			Yes		No	V	Not Present	
2. How was the	sample delive	red?			Clier	<u>ıt</u>				
<u>Log In</u> 3. Was an attem	npt made to co	ool the samples?			Yes	V	No		na 🗆	
4. Were all samp	oles received a	at a temperature	of >0° C to 6.0°C	;	Yes	V	No		NA \square	
5. Sample(s) in p	proper contain	er(s)?			Yes	V	No			
6. Sufficient sam	ple volume fo	r indicated test(s)	?		Yes	V	No		9	
7. Are samples (except VOA a	nd ONG) properly	preserved?		Yes	V	No			
8. Was preserva	tive added to	pottles?			Yes		No	Y	NA 🗌	
9. Received at le	east 1 vial with	headspace <1/4	for AQ VOA?		Yes		No		NA 🗹	
10. Were any san	nple container	s received broker	1?		Yes		No	V	# of preserved	
11. Does paperwo	ork match bott	le lahels?			Yes	V	No		bottles checked for pH:	
(Note discrepa					, 00					unless noted)
12. Are matrices o	correctly identi	fied on Chain of (Custody?		Yes	V	No		Adjusted? N0	
13. Is it clear what	•	-			Yes	✓	No		CIM	alula
14. Were all holdi (If no, notify c					Yes	V	No		Checked by:	1118/47
Special Handl	ing (if app	licable)								
15. Was client no	otified of all dis	crepancies with t	his order?		Yes	V	No		NA 🗌	
Person	Notified:	Tyler Curtis	[Date:			9/18/	2023		
By Who	om:			/ia: [⊌	eM.	ail	Phone	Fax	In Person	
Regard	ing: nstructions:	All Client informat	ion is not provide	ed on CC	C.					
16. Additional re	marks:									
17. <u>Cooler Infor</u> Cooler No			eal Intact Seal I Present Morty	No S	eal D	ate	Signed	Ву		

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	TPH:8015D(GRO \ DRO \ MRO) 8081 Pesticides/8082 PCB's EDB (Method 504.1) PAHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent)	KS: * Information Filled in by D. A Any sub-contracted data will be clear
	BTEX / MTBE / TMB's (8021)	Ren Ren Arthur possil
Turn-Around Time: Standard Rush Sept 20 2023 Project Name: Nell 9R Project #:	Sampler: Zw. Sampler: Zw. Soolers: A Yes Do No No RTY Coolers: Cooler Temp(Induding CF): 346-0=3.8 (************************************	
Chain-of-Custody Record Client: Hydro Resources * Mailing Address: Ft, Lupton Co. *	tion Ition	Date: Time: Relinquished by: Received by: Via: 5CM Alt 16:24 Fig. 12 4 20 3 Various of the surrounded to other accredited laboratories.

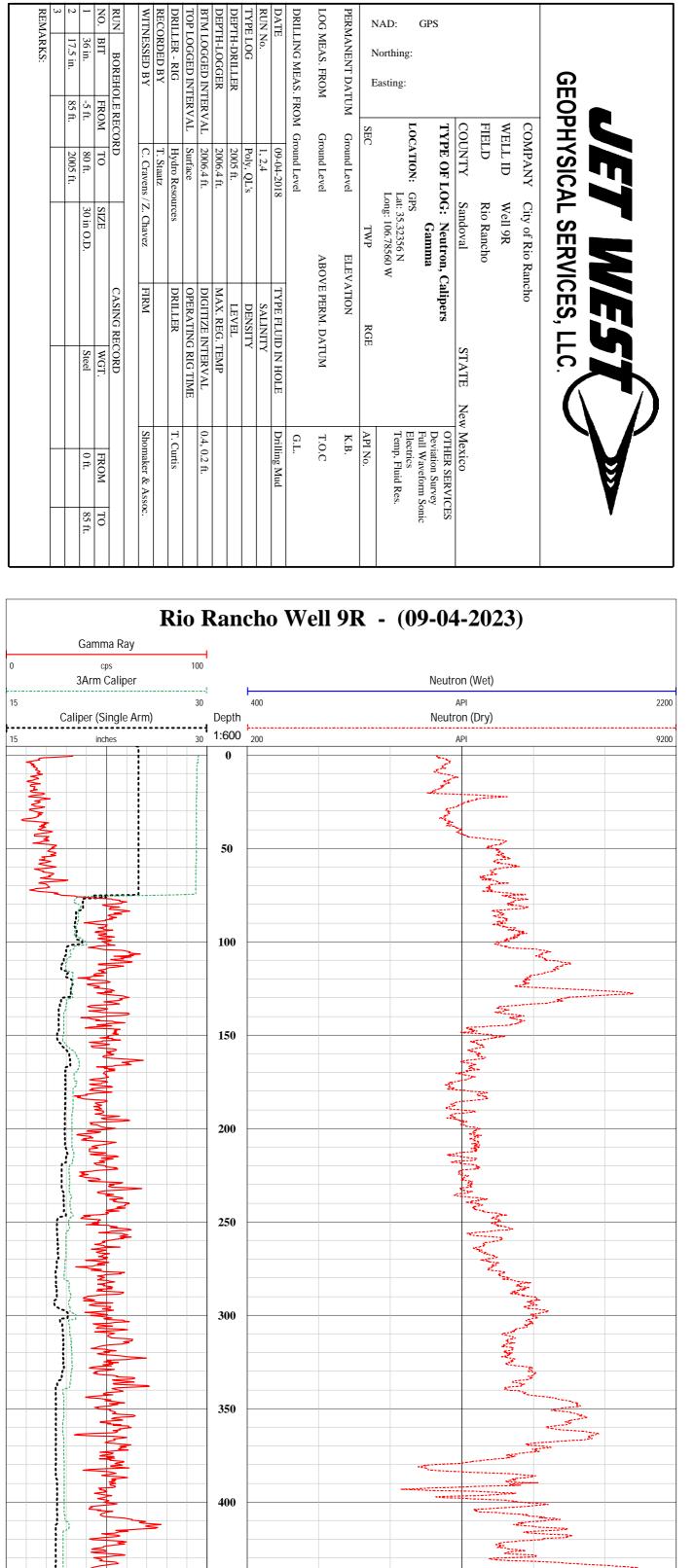
naga.	of
page:	O _I

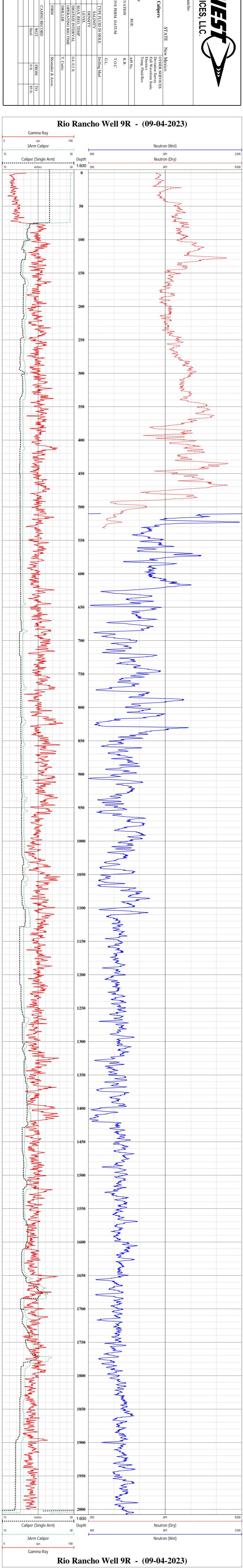
DAILY FIELD LOG

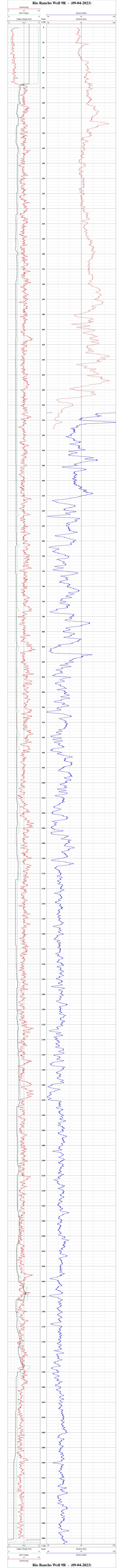
ACTIVITY: Zone 3 Analytes CLIENT: GEOLOGIST: Calcium Sodium Sodium Mercury Jelenium Ladmium Mercury Jelenium Ladmium Mercury Jelenium Ladmium Ladmium Mercury Jelenium Lead Carbonale alkalinity Chloride Clientical conductivity TDS Fluoride Acsenic - total and dissolved beryllium	
GEOLOGIST: Cakium Sodium Mercury iron Lead Lead Carbonate alkalinity Claloride Claloride Claloride TDS Fluoride Arsenic - total and dissolved	
sodium iron bardness as CaCO3 lead carbonate alkalinity chloride chloride cleetrical conductivity TDS fluoride arsenic - total and dissolved	
iron hardness as Co(O3 lead carbonate alkalinity chloride cherical conductivity TDS fluoride arsenic - total and dissolved	
hardness as CoCO3 lead carbonate alkalinity uranium chloride cherical conductivity TDS fluoride arsenic - total and dissolved	
carbonate alkalinity wranium chloride gross al electrical conductivity TDS fluoride arsenic - total and dissolved	
carbonate alkalinity wranium chloride gross al electrical conductivity TDS fluoride arsenic - total and dissolved	e
cheride cleetrical conductivity TDS fluoride arsenic - total and dissolved	
electrical conductivity TDS fluoride arsenic - total and dissolved	pha and beta
fluoride arsenic - total and dissolved	
arsenic - total and dissolved	
· · · · · · · · · · · · · · · · · · ·	
han it?	
Deryllium	
Chronium	
nickel	=
- Heallium	
Lopper	
radium 224-228	
magnesium	
potassium	
manganese	
alkalinity as Coloz	
bicarbonate alkalinity	
sulfate 0	
- turbidi ly	
antimony	
barium	

Appendix F.

Reamed borehole caliper logs, City of Rio Rancho Well 9R


cu.yd


160.93


cu.yd

20

Inches

Appendix G.

Video Survey, City of Rio Rancho Well 9R

Appendix H.

Well plugging and abandonment report for original City of Rio Rancho Well 9 (RG-26259)

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	ENERAL / WELL OWNERSHIP: Engineer Well Number: RG26259			
	owner: City of Rio Rancho			(505) 801-5000
	ing address: 3200 Civic Center Circle		Phone No.: \(\frac{1}{2}\)	505) 891-5000
	Rio Rancho	Canan	New Mexico	97444
,		_ State:	TOTAL MOXICO	Zip code: 87114
II. V	VELL PLUGGING INFORMATION:			
1)	Name of well drilling company that plugged	d well: Hydro	Resources	
2)	New Mexico Well Driller License No.: W	D-1726	Exp	oiration Date: 10/31/2025
3)	Well plugging activities were supervised by Tyler Curtis	the following	g well driller(s)/rig superviso	r(s):
4)	Date well plugging began: 7/22/2023	1	Date well plugging conclude	d: 7/26/2023
5)		34 deg 106 deg		
6)	Depth of well confirmed at initiation of plug by the following manner: Run in temmie pi	ging as: 1	,540 ft below ground leve	l (bgl),
7)	Static water level measured at initiation of p	lugging: 1	,110 ft bgl	
8)	Date well plugging plan of operations was a	pproved by th	e State Engineer: 5/10/202	23
9)	Were all plugging activities consistent with a differences between the approved plugging p	an approved polan and the w	lugging plan? Yes yell as it was plugged (attach	If not, please describe additional pages as needed):
Pum	ped cement according to the Plugging Plan			
				2021
				В
				الله الم
				D
				C1

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement Method (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
-	HolcimType 1L cement 14.5 Sack 1,363 Cement	1,500' - Pumped 2019 Gallons	1,690 Gallons	Tremmie Pipe	Screen Sections 1,220' - 1,315'
=	1,363 Sand 84 Gallons Water	1,372' - Pumped 2,019 Gallons	1,690 Gallons		1,340'- 1,360' 1,370'- 1,395' 1,415'-1,520'
_		1,244' - Pumped 2,019 Gallons	2,106 Gallons		
		1,084' - Pumped 2,019 Gallons	1,690 Gallons		
4		956' - Pumped 2,019 Gallons	1,690 Gallons	19/07	198 NGC 1030
=		828' - Pumped 2,019 Gallons	2,106 Gallons	4 FEB	
		668' - Pumped 2,019 Gallons	1,690 Gallons	FEB -9 A II:	
一		540' - Pumped 2,019 Gallons	1,690 Gallons	-	
		380' - Pumped 2,019 Gallons	1,690 Gallons		
占		220' - Pumped 2,019 Gallons	2,106 Gallons		
-					
]					
		MULTIPLY E	BY AND OBTAIN		
			805 = gallons		

III. SIGNATURE: Jim Hale

1,	, say that I am	familiar with the	rules of the	Office of the State
Engineer pertaining to the plugging of wells and that	each and all of the	statements in this	s Plugging Reco	ord and attachments
are true to the best of my knowledge and belief.				ord und unadminding
/)	. / .			
4	- 161-			2/2/2024
- Per	100			21212024

Signature of Well Driller

Date

Appendix I.

Water-quality laboratory reports, City of Rio Rancho Well 9R

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 05, 2024

Jacob Gallagher
Hydro Resources RM
13207 County Road 18, Unit C
Fort Lupton, CO 80621

TEL: (303) 857-7540

FAX:

RE: Rio Rancho OrderNo.: 2312E31

Dear Jacob Gallagher:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 12/27/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2312E31**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/5/2024

CLIENT: Hydro Resources RM Client Sample ID: RR9R

Project: Rio Rancho
 Collection Date: 12/27/2023 1:14:00 PM

 Lab ID: 2312E31-001
 Matrix: AQUEOUS
 Received Date: 12/27/2023 2:40:00 PM

Result					Date Analyzed	Batch
					Analyst	bcv
ND	0.0010		mg/L	1	1/12/2024 4:45:57 PM	79799
0.048	0.00050	*	mg/L	1	1/5/2024 3:51:45 PM	79718
0.0065	0.00050		mg/L	1	1/4/2024 3:26:44 PM	79718
ND	0.00050		mg/L	1	1/4/2024 3:26:44 PM	79718
0.0011	0.0010		mg/L	1	1/4/2024 3:26:44 PM	79718
ND	0.00025		mg/L	1	1/4/2024 3:26:44 PM	79718
0.0013	0.00050		mg/L	1	1/4/2024 3:26:44 PM	79718
					Analyst	: KH
Absent	0		P/A	1	12/28/2023 11:55:00 AM	1 79632
Absent	0		P/A	1	12/28/2023 11:55:00 AM	1 79632
					Analyst	: KS
14	0.50	*	NTU	1	12/28/2023 5:00:00 PM	R10212
					Analyst	RBC
0.41	0.10		mg/L	1	12/27/2023 5:22:59 PM	R10214
4.1	0.50		mg/L	1	12/27/2023 5:22:59 PM	R10214
ND	0.10		mg/L	1	12/27/2023 5:22:59 PM	R102147
1.6	0.10		mg/L	1	12/27/2023 5:22:59 PM	R102147
48	10		mg/L	20	12/27/2023 5:38:09 PM	R102147
					Analyst	: KS
241	50.0		mg/L	1	1/4/2024 4:38:00 PM	79716
					Analyst	RBC
102.3	20.00		mg/L Ca	1	12/28/2023 6:56:47 PM	R102142
7.120	2.000		mg/L Ca	1	12/28/2023 6:56:47 PM	R102142
109.4	20.00		mg/L Ca	1	12/28/2023 6:56:47 PM	R102142
					Analyst	: RBC
8.64		*H	pH units	1	12/28/2023 6:56:47 PM	R102142
					Analyst	: JRR
0.37	0.020	*	mg/L	1	1/4/2024 4:56:13 PM	79718
0.055	0.0030		mg/L	1	1/4/2024 4:56:13 PM	79718
ND	0.0020		mg/L	1	1/4/2024 4:56:13 PM	79718
ND	0.0020		mg/L	1	1/4/2024 4:56:13 PM	79718
4.0	1.0		mg/L	1	1/4/2024 4:56:13 PM	79718
0.0072	0.0060		mg/L	1	1/4/2024 4:56:13 PM	79718
0.19	0.050		mg/L	1	1/4/2024 4:56:13 PM	79718
ND			mg/L	1	1/4/2024 4:56:13 PM	79718
0.0045	0.0020		mg/L	1	1/4/2024 4:56:13 PM	79718
	ND 0.048 0.0065 ND 0.0011 ND 0.0013 Absent Absent 14 0.41 4.1 ND 1.6 48 241 102.3 7.120 109.4 8.64 0.37 0.055 ND ND ND 4.0 0.0072 0.19	ND 0.0010 0.048 0.00050 0.0065 0.00050 ND 0.00050 0.0011 0.0010 ND 0.00025 0.0013 0.00050 Absent 0 Absent 0 14 0.50 14 0.50 14 0.50 ND 0.10 1.6 0.10 48 10 241 50.0 102.3 20.00 7.120 2.000 109.4 20.00 8.64 0.37 0.020 0.055 0.0030 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 0.19 0.0550 ND 1.0	ND 0.0010 0.048 0.00050 * 0.0065 0.00050 ND 0.00050 0.0011 0.0010 ND 0.00025 0.0013 0.00050 Absent 0 Absent 0 14 0.50 * 0.41 0.10 4.1 0.50 ND 0.10 1.6 0.10 48 10 241 50.0 102.3 20.00 7.120 2.000 109.4 20.00 109.4 20.00 8.64 *H 0.37 0.020 * 0.055 0.0030 ND 0.0020 ND 0.0050 ND 1.0	ND 0.0010 mg/L 0.048 0.00050 * mg/L 0.0065 0.00050 mg/L ND 0.00050 mg/L ND 0.00050 mg/L ND 0.00025 mg/L 0.0013 0.00050 mg/L Absent 0 P/A Absent 0 P/A Absent 0 P/A 14 0.50 * NTU 0.41 0.10 mg/L 4.1 0.50 mg/L ND 0.10 mg/L ND 0.10 mg/L 48 10 mg/L 241 50.0 mg/L 102.3 20.00 mg/L 48 10 mg/L 241 50.0 mg/L Ca 7.120 2.000 mg/L Ca 7.120 2.000 mg/L Ca 109.4 20.00 mg/L Ca 109.4 20.00 mg/L Ca 109.4 20.00 mg/L Ca 0.37 0.020 * mg/L ND 0.0020 mg/L 0.055 0.0030 mg/L ND 0.0020 mg/L 0.055 0.0030 mg/L ND 0.0020 mg/L ND 0.0020 mg/L 0.0072 0.0060 mg/L 0.19 0.050 mg/L ND 1.0 mg/L ND 1.0 mg/L	ND 0.0010 mg/L 1 0.048 0.00050 * mg/L 1 0.0065 0.00050 mg/L 1 ND 0.00050 mg/L 1 0.0011 0.0010 mg/L 1 ND 0.00025 mg/L 1 0.0013 0.00050 mg/L 1 Absent 0 P/A 1 Absent 0 P/A 1 4 0.50 * NTU 1 0.41 0.10 mg/L 1 ND 0.10 mg/L 1 ND 0.10 mg/L 1 16 0.10 mg/L 1 16 0.10 mg/L 1 16 0.10 mg/L 1 17.120 2.000 mg/L 20 241 50.0 mg/L 20 241 50.0 mg/L 20 241 50.0 mg/L 21 102.3 20.00 mg/L 21 109.4 20.00 mg/L 21 109.4 20.00 mg/L 21 109.4 20.00 mg/L 21 109.4 20.00 mg/L 21 8.64 *H pH units 1 0.37 0.020 * mg/L 21 100.055 0.0030 mg/L 1 ND 0.0020 mg/L 1 0.0072 0.0060 mg/L 1 0.0072 0.0060 mg/L 1 0.19 0.050 mg/L 1 ND 1.0 mg/L 1 ND 1.0 mg/L 1	ND 0.0010 mg/L 1 1/12/2024 4:45:57 PM 0.048 0.00050 * mg/L 1 1/5/2024 3:51:45 PM 0.0065 0.00050 mg/L 1 1/4/2024 3:26:44 PM ND 0.00050 mg/L 1 1/4/2024 3:26:44 PM ND 0.0011 0.0010 mg/L 1 1/4/2024 3:26:44 PM ND 0.00025 mg/L 1 1/4/2024 3:26:44 PM 0.0013 0.00050 mg/L 1 1/4/2024 3:26:44 PM 0.0013 0.00050 mg/L 1 1/4/2024 3:26:44 PM Analyst Absent 0 P/A 1 12/28/2023 11:55:00 AM Absent 0 P/A 1 12/28/2023 11:55:00 AM Absent 0 P/A 1 12/28/2023 11:55:00 AM Analyst 14 0.50 * NTU 1 12/28/2023 5:00:00 PM Analyst 0.41 0.10 mg/L 1 12/27/2023 5:22:59 PM 1.6 0.10 mg/L 1 12/27/2023 5:22:59 PM 1.6 0.10 mg/L 1 12/27/2023 5:22:59 PM AB 10 mg/L 20 12/27/2023 5:38:09 PM Analyst 241 50.0 mg/L 1 1/4/2024 4:38:00 PM Analyst 102.3 20.00 mg/L 20 12/27/2023 6:56:47 PM 7.120 2.000 mg/L 21 12/28/2023 6:56:47 PM 109.4 20.00 mg/L 21 12/28/2023 6:56:47 PM Analyst 8.64 *H pH units 1 12/28/2023 6:56:47 PM Analyst 0.37 0.020 * mg/L 1 1/4/2024 4:56:13 PM ND 0.0020 mg/L 1 1/4/2024 4:56:13 PM ND 0.0072 0.0060 mg/L 1 1/4/2024 4:56:13 PM ND 0.055 mg/L 1 1/4/2024 4:56:13 PM ND 0.0072 0.0060 mg/L 1 1/4/2024 4:56:13 PM ND 0.0072 0.0060 mg/L 1 1/4/2024 4:56:13 PM ND 0.0072 0.0060 mg/L 1 1/4/2024 4:56:13 PM ND 0.0070 0.0060 mg/L 1 1/4/2024 4:56:13 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 15

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/5/2024

CLIENT: Hydro Resources RM Client Sample ID: RR9R

Project: Rio Rancho
 Collection Date: 12/27/2023 1:14:00 PM

 Lab ID: 2312E31-001
 Matrix: AQUEOUS
 Received Date: 12/27/2023 2:40:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: METALS					Analys	t: JRR
Potassium	1.7	1.0	mg/L	1	1/4/2024 4:56:13 PM	79718
Silver	ND	0.0050	mg/L	1	1/4/2024 4:56:13 PM	79718
Sodium	68	1.0	mg/L	1	1/4/2024 4:56:13 PM	79718
Zinc	ND	0.010	mg/L	1	1/4/2024 4:56:13 PM	79718
EPA METHOD 245.1: MERCURY					Analys	t: tem
Mercury	ND	0.00020	mg/L	1	1/17/2024 3:41:04 PM	79910
PURGEABLE ORGANICS BY EPA 524					Analys	t: RAA
Benzene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Carbon tetrachloride	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Chlorobenzene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
cis-1,2-Dichloroethene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,2-Dichlorobenzene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,4-Dichlorobenzene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,2-Dichloroethane	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,1-Dichloroethene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,2-Dichloropropane	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Ethylbenzene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Methylene chloride	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Styrene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Tetrachloroethene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Toluene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
trans-1,2-Dichloroethene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,2,4-Trichlorobenzene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,1,1-Trichloroethane	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
1,1,2-Trichloroethane	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Trichloroethene	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Vinyl chloride	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Total Xylenes	ND	0.50	μg/L	1	1/3/2024 2:40:00 PM	R102225
Surr: 1,2-Dichlorobenzene-d4	94.6	70-130	%Rec	1	1/3/2024 2:40:00 PM	R102225
Surr: 4-Bromofluorobenzene	99.3	70-130	%Rec	1	1/3/2024 2:40:00 PM	R102225

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#:See BelowLab/Sample Number:MDL0888-01Date Received:12/28/2023Date Reported by Lab:02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001F (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Inorganic Chemical (IOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
	Color	10.0 @ pH 8.51	Color Units	15	5.00	12/28/23 16:00	CC	SM 2120 B	
1920	Odor (threshold #)	ND	T.O.N.	3	1.00	12/28/23 16:00	CC	SM 2150 B	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#:See BelowLab/Sample Number:MDL0888-02Date Received:12/28/2023Date Reported by Lab:02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001G (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Inorganic Chemical (IOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
1927	Alkalinity as CaCO3	114 to pH 4.5	mg CaCO3/L		2.00	1/5/24 14:03	СС	SM 2320 B	
1016	Calcium	4.24	mg/L		0.100	1/15/24 14:52	TEC	EPA 200.7	
1997	Langlier Index	-0.724			-20.0	1/5/24 14:03	CC	Calculation	
1925	pH	8.15 @ 21.3°C	pH Units			1/5/24 14:03	CC	SM 4500-H-B	H5
1930	Total Dissolved Solids	229	mg/L		50.0	12/29/23 15:04	CC	SM 2540 C	
2905	Surfactants	ND	mg/L 342.4MW LAS		0.0500	12/29/23 10:00	DTA	SM 5540 C	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#:See BelowLab/Sample Number:MDL0888-03Date Received:12/28/2023Date Reported by Lab:02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001H (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Volatile Organic Chemical (VOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2931	DBCP	ND	ug/L	0.2	0.0200	1/3/24 23:17	TAZ	EPA 504.1	
2946	EDB	ND	ug/L	0.05	0.0100	1/3/24 23:17	TAZ	EPA 504.1	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MDL0888-04

Date Received: 12/28/2023 Date Reported by Lab: 02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001I (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2034	Glyphosate	ND	ug/L	700	5.00	1/8/24 20:26	ВКР	EPA 547	
2005	Endrin	ND	ug/L	2	0.0100	1/8/24 17:57	GPB	EPA 505	
2010	Lindane (BHC-Gamma)	ND	ug/L	0.2	0.0200	1/8/24 17:57	GPB	EPA 505	
2015	Methoxychlor	ND	ug/L	40	0.100	1/8/24 17:57	GPB	EPA 505	
2020	Toxaphene	ND	ug/L	3	1.00	1/8/24 17:57	GPB	EPA 505	
2065	Heptachlor	ND	ug/L	0.4	0.0400	1/8/24 17:57	GPB	EPA 505	
2067	Heptachlor epoxide	ND	ug/L	0.2	0.0200	1/8/24 17:57	GPB	EPA 505	
2383	PCBs	ND	ug/L	0.5	0.500	1/8/24 17:57	GPB	EPA 505	
2959	Chlordane	ND	ug/L	2	0.200	1/8/24 17:57	GPB	EPA 505	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#:See BelowLab/Sample Number:MDL0888-05Date Received:12/28/2023Date Reported by Lab:02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001J (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2036 2046	Oxamyl (Vydate) Carbofuran	ND ND	ug/L ug/L	200 40	2.00 0.900	1/23/24 23:01 1/23/24 23:01	BKP BKP	EPA 531.2 EPA 531.2	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MDL0888-06

Date Received: 12/28/2023 Date Reported by Lab: 02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001K (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2035	Di(2-ethylhexyl)adipate	ND	ug/L	400	0.600	1/9/24 22:37	BMM	EPA 525.2	
2037	Simazine	ND	ug/L	4	0.0700	1/9/24 22:37	BMM	EPA 525.2	
2039	Di(2-ethylhexl)phthalate	ND	ug/L	6	0.600	1/9/24 22:37	BMM	EPA 525.2	
2042	Hexachlorocyclopentadiene	ND	ug/L	50	0.100	1/9/24 22:37	BMM	EPA 525.2	
2050	Atrazine	ND	ug/L	3	0.100	1/9/24 22:37	BMM	EPA 525.2	
2051	Alachlor (Lasso)	ND	ug/L	2	0.200	1/9/24 22:37	BMM	EPA 525.2	
2274	Hexachlorobenzene	ND	ug/L	1	0.100	1/9/24 22:37	BMM	EPA 525.2	
2306	Benzo[a]pyrene	ND	ug/L	0.2	0.0200	1/9/24 22:37	BMM	EPA 525.2	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#:See BelowLab/Sample Number:MDL0888-07Date Received:12/28/2023Date Reported by Lab:02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001L (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2033	Endothall	ND	ug/L	100	9.00	1/11/24 18:52	GPB	EPA 548.1	
2031	Dalapon	ND	ug/L	200	1.00	1/17/24 2:59	tgt	EPA 515.4	
2040	Picloram	ND	ug/L	500	0.100	1/17/24 2:24	tgt	EPA 515.4	
2041	Dinoseb	ND	ug/L	7	0.200	1/17/24 2:24	tgt	EPA 515.4	
2105	2,4-D	ND	ug/L	70	0.100	1/17/24 2:24	tgt	EPA 515.4	
2110	2,4,5-TP (Silvex)	ND	ug/L	50	0.200	1/17/24 2:24	tgt	EPA 515.4	
2326	Pentachlorophenol	ND	ug/L	1	0.0400	1/17/24 2:24	tgt	EPA 515.4	
			- 31			, ,	.5.		

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MDL0888-08

Date Received: 12/28/2023 Date Reported by Lab: 02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001M (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2032	Diquat	ND	ug/L	20	0.400	1/5/24 17:14	taz	EPA 549.2	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MDL0888-09

Date Received: 12/28/2023 Date Reported by Lab: 02/02/2024

Compliance Sample: Yes Replacement Sample: No Collect Date: 12/27/2023 Collection Time: 13:14

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2312E31-001M (RR9R) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Inorganic Chemical (IOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
1024	Cyanide	ND	mg/L	0.2	0.0100	1/4/24 10:43	MMC	EPA 335.4	

Andy Freeman Hall Environmental Analysis Lab 4901 Hawkins NE Suite D Albuquerque,NM 87109 505-345-3975 Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

H5 This test is specified to be performed in the field within 15 minutes of sampling; sample was received and

analyzed past the regulatory holding time.

R1 RPD/RSD exceeded the method acceptance limit

R2 RPD/RSD exceeded the laboratory acceptance limit.

MRL Minimum Reporting Level

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyteRPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Environment Testing

CHAIN OF CUSTODY RECOR

	1000
-	-
	5

MDL0888

Euro

Due: 01/11/24

SUB C	SUB CONTRATOR. Anatek ID	K ID COMPANY:	Anatek Labs, Inc.		PHONE	(208) 883-2839 FAX:	(208) 882-9246
ADDRESS	0.1	1282 Alturas Dr			ACCOUNT#	EMAIL	
CITY, S	CITY, STATE, ZIP Mosco	Moscow, ID 83843					
ITEM	SAMPLE	CLIENT SAMPLE ID	ВОТТЬЕ	MATRIX	COLLECTION	# CONTAINERS	ANALYTICAL COMMENTS
1	2312E31-001F RR9R	RR9R	1LAmber	Aqueous	12/27/2023 1:14:00 PM	1 Color, Odor	
2	2312E31-001G	RR9R	500HDPE	Aqueous	12/27/2023 1:14:00 PM	1 Corrosivity, Surfactants	
ω	2312E31-001H	RR9R	VOANA2S2O Aqueous	Aqueous	12/27/2023 1:14:00 PM	2 Full SOC W/ EDB/DBCP	
4	2312E31-001I	RR9R	VOANA2S2O Aqueous		12/27/2023 1:14:00 PM	2 Full SOC W/ EDB/DBCP	
ъ	2312E31-001J	RR9R	VOAC6H7KO	Aqueous	VOAC6H7KO Aqueous 12/27/2023 1:14:00 PM	2 Full SOC W/ EDB/DBCP	
6	2312E31-001K RR9R	RR9R	1LAMGNASO Aqueous	Aqueous	12/27/2023 1:14:00 PM	2 Full SOC W/ EDB/DBCP	
7	2312E31-001L	RR9R	500AMBNA2 Aqueous	Aqueous	12/27/2023 1:14:00 PM	1 Full SOC W/ EDB/DBCP	
8	2312E31-001M RR9R	RR9R	250 HDPE	Aqueous	12/27/2023 1:14:00 PM	1 Full SOC W/ EDB/DBCP	
9	2312E31-0010 RR9R	RR9R	500AMBHDP	Aqueous	500AMBHDP Aqueous 12/27/2023 1:14:00 PM	1 Total Cyanide	

SPECIAL INSTRUCTIONS / COMMENTS:

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you.

Relinquished By CMC	Date: 12/27/2023	Date: Time: Received By:		N. A.	Date Time	Time:	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date	Time			Date	Time	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
9					1		EOD I AD HEE ONLY
Relinquished By	Date	Time	Received By		Date	Time	FOR LAB USE ONLY
							Temp of samples C Attempt to Cool ?
TAT:	Standard 🙋	RUSH	Next BD	2nd BD	3rd BD		
	,						Comments

	Anatek Labs, Inc.
--	-------------------

Sample Receipt and Preservation Form

Client Name: Hall	-		
TAT: Normal) RUSH: days			
Samples Received From: FedEx UPS	USPS Client	Courier Other:	
Custody Seal on Cooler/Box: Yes No	Custody Sea	Is Intact: Yes No N	/A
Number of Coolers/Boxes:	Type of Ice:	Wet Ice ce Packs	Ory Ice None
Packing Material: Bubble Wrap Bags	Foam/Peanuts	Paper None Other:	
Cooler Temp As Read (°C): 0.3	Cooler Temp Corrected ((°C): Thermometer	Used: IR 5
		Comr	nents:
Samples Received Intact?	Yes No N/A		
Chain of Custody Present/Complete?	Yes No N/A		
Labels and Chains Agree?	Yes No N/A		
Samples Received Within Hold Time?	Yes No N/A		
Correct Containers Received?	Yes No N/A		
Anatek Bottles Used?	Yes No Unknow	n	
Total Number of Sample Bottles Received:	12		
		Initial pH:	pH Paper ID:
Samples Properly Preserved?	Yes No N/A	<2 or	
If No, record preservation and pa	H-after details		
VOC Vials Free of Headspace (<6mm)?	Yes No (N/A)		
VOC Trip Blanks Present?	Yes No N/A		
Record preservatives (and lot numbers, if kr	nown) for containers belo	ow:	
GIL-Color, Odor	P250-ST-Diquat		
P500-Corrosivity, Surfactants	P500 - NOOH - CN		
GYY- ST- EDB XZ			
G44- ST- Pest / Glyph x2			
G44 - carb x2			
GIL -58/HC1 - 525			
G500-ST-Herb/Endo			
Notes, comments, etc. (also use this space	if contacting the client -	record names and date/time)
Received/Inspected By:	Deta/Time	12/28/23	1:00
Received/Inspected By: Form F19.01 - Eff 1 Dec 2022	Date/Time:	10/20/23	Page 1 of 1

Contact: Andy Freeman

Company: Eurofins Albuquerque, NM

Address: 4901 Hawkins NE,

Albuquerque, NM 87109

Project / Location: NA PO Number: NA ALS Work Order: 23121083

NARRATIVE: Analysis performed on FEI Tecnai TEM equipped with EDAX Octane T Plus Silicon

Drift Detector and Z2 Analyzer. Fiber morphology, selected area electron diffraction (SAED), and energy dispersive x-ray analysis (EDXA) used to determine species. All sample collection is performed outside of ALS Cincinnati is therefore the sole responsibility of the client. Contact your local authority for information on method selection, sampling instructions, and reporting requirements prior to submission.

NOTICE: All US EPA Public Water System (PWS) drinking water compliance samples must be filtered by the laboratory within 48 hours of sampling. ALS cannot report analytical results directly to the EPA unless all of the information required by the state EPA agency is provided via the COC at the time of receipt. Report revisions resulting from failure to provide this information via the COC will result in additional administrative fees. ALS is not responsible for late or inaccurate EPA reporting as a result of client sample collection errors or sample information omissions. Water samples originating from outside the United States do not fall under the US EPA drinking water guidelines and are therefore not required to meet the 48 hour hold and are not reported to any agency.

METHOD CODES: "EPA 100.2" refers only to drinking (potable) PWS samples for EPA compliance which are required to be filtered within 48 hours of sampling and are analyzed at >10,000x for asbestos fibers >10µm long. "ENV 005" refers to a modified version of EPA 100.2 developed for all other non-potable, non-compliance, and non-US waters which are also analyzed at >10,000x for asbestos fibers >10µm long but are not required to meet the 48 hour hold time. "EPA 100.1" refers to waters analyzed by a modified version of the method for asbestos fibers of any size. All excess water is disposed immediately following adequate filtration. All filtered samples are disposed after 60 day archive. All TEM grids analyzed are archived for a minimum of 3 years. Results apply only to portions of samples analyzed.

SUMMARY: An AS of <0.2 MFL is desired for drinking (potable) waters, and an AS of <7 MFL is generally acceptable for non-potable waters. Whenever possible, a sufficient volume is analyzed to yield the desired AS based on the detection of 1 confirmed asbestos fiber in the total area analyzed. However, waters containing excessive solids may require filtration of volumes too low to achieve the desired AS. In any case, a minimum of 4 and maximum of 10 grid openings are analyzed regardless of the AS reached or the asbestos concentration detected. Representative EDXA spectra and/or photomicrographs are available upon request for an additional fee. NA=Not Applicable, AS=Analytical Sensitivity, MFL=Millions of Fibers per Liter, MRL=Method Reporting Limit

> ALS Cincinnati accredited by NY ELAP for Asbestos in Water by EPA 100.2 OH State Lab No.: 4077, OH Analyst Nos.: 2268 (P. Hizar), 3431 (A. Sohn)

PA State Lab No.: 68-01320, PA Certification No.: 003

WA State Lab No.: 211

NY State Lab No.: 11371

Pamela M. Hizar

Pamela M. Hizar

ALS Asbestos Technical Lead & Microscopy Department Manager

IDENTIFICATION

IDENTIFICATION	
·	2312E31-001E /
Client ID:	RR9R
ALS ID:	23121083-01A
Method:	EPA 100.2
MRL:	<0.2MFL
Collection:	12/27/23 1:14 PM
Filtration:	12/28/23 9:45 AM
Elapsed:	0days18hrs31mins
Sample Comments:	NONE
ANALYSIS	
Analyst:	Pamela Hizar
Completed:	1/5/24 9:00 AM
Volume (L):	0.15
Avg. Opening Area (mm ²):	0.0102
No. Openings Analyzed:	4
AS (MFL):	0.18
COUNT	
Chrysotile:	0
Amosite:	0
Crocidolite:	0
Actinolite:	0
Tremolite:	0
Anthophyllite:	0
Total Asbestos:	0
CONCENTRATION (MFL)	
Chrysotile:	<as< td=""></as<>
Amosite:	<as< td=""></as<>
Crocidolite:	<as< td=""></as<>
Actinolite:	<as< td=""></as<>
Tremolite:	<as< td=""></as<>
Anthophyllite:	<as< td=""></as<>
Total Asbestos:	<as< td=""></as<>
Analysis Comments:	NONE

ANALYTICAL REPORT

PREPARED FOR

Attn: Data Submittal
EET South Central Hall Environmental Analysis Laboratory
4901 Hawkins NE
Suite D

Albuquerque, New Mexico 87109

Generated 1/25/2024 2:15:40 PM

JOB DESCRIPTION

Standard Rad Analysis 2312E31

JOB NUMBER

160-52697-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Suihal)orda 1/25/2024 2:15:40 PM

Authorized for release by Erika Jordan, Project Manager erika.jordan@et.eurofinsus.com (314)298-8566

Eurofins St. Louis is a laboratory within TestAmerica Laboratories, Inc., a company within Eurofins Environment Testing Group of Companies

1/25/2024

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Chain of Custody	6
Receipt Checklists	7
Definitions/Glossary	8
Method Summary	9
Sample Summary	10
Client Sample Results	11
QC Sample Results	12
QC Association Summary	14
Tracer Carrier Summary	15

4

9

7

9

10

11

49

Case Narrative

Client: EET South Central Hall Environmental Analysis Laboratory

Job ID: 160-52697-1

Project: Standard Rad Analysis

Job ID: 160-52697-1 Eurofins St. Louis

CASE NARRATIVE

Client: Hall Environmental Analysis Laboratory

Project: 2312E31

Report Number: 160-52697-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

The matrix for the Method Blank and LCS/LCSD is as close to the samples as can be reasonably achieved. Detailed information can be found in the most current revision of the associated SOP.

The method blank (MB) z-score is within limits, unless stated otherwise below.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.

Reference the chain of custody and receipt report for any variations on receipt conditions.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

Receipt

The sample was received on 12/28/2023 9:10 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 11.0°C

Method 900.0 - Gross Alpha and Gross Beta Radioactivity

Sample 2312E31-001N/RR9R (52697-1) was analyzed for Gross Alpha and Gross Beta Radioactivity. The sample was prepared on 1/2/2024 and analyzed on 1/18/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method 903.0 - Radium-226 (GFPC)

Sample 2312E31-001N/RR9R (52697-1) was analyzed for Radium-226 (GFPC). The sample was prepared on 1/2/2024 and analyzed on 1/24/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method 904.0 - Radium-228 (GFPC)

Eurofins St. Louis

Page 4 of 15 1/25/2024

6

4

5

6

10

11

4.0

Case Narrative

Client: EET South Central Hall Environmental Analysis Laboratory

Project: Standard Rad Analysis

Job ID: 160-52697-1 (Continued)

Eurofins St. Louis

Job ID: 160-52697-1

Sample 2312E31-001N/RR9R (52697-1) was analyzed for Radium-228 (GFPC). The sample was prepared on 1/2/2024 and analyzed on 1/18/2024 and 1/24/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Eurofins St. Louis

Page 5 of 15 1/25/2024

2

4901 Hawkins NE

Eurofins Environment Testing South Central, LLC

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-3975

Website: www.hallenvironmental.com

SUB CONTRATOR Eurofins St. Louis COMPANY	Eurofins TestAmerica	PHONE	(314) 298-8566 FAX	(314) 298-8757
13715 Rider Trail North		ACCOUNT #	EMAIL	
CITY. STATE, ZIP Earth City, MO 63045		I		
TEM SAMPLE CLIENT SAMPLE ID	BOTTLE TYPE MATRIX	COLLECTION	# CONTAINERS	ANALYTICAL COMMENTS
1 2312E31-001N RR9R	1LHDPEHNO Aqueous 12/27	72023 1:14:00 PM	PEHNO Aqueous 12/27/2023 1:14:00 PM 4 Gross Alpha/Beta, Ra226/228 - Pease Apply ICO Pricing-	ise Apply ICO Pricing-

SPECIAL INSTRUCTIONS / COMMENTS:

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall. Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you.

telinquished By Com		Date. 12/27/2023 Time. 3:10 PM Reco	Received By	Dats Time 10910	REPORT TRANSMITTAL DESIRED:
telinquished By	Date	Time	Received By	Date Time	☐ HARDCOPY (evtra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
elinquished By	Date	Time	Received By	Date	FOR LAB USE ONLY
TATE	Standard Q	RUSH	Next BD	3rd BD	Temp of samples C Attempt to Cool?
					Comments

Environment Testing

Login Sample Receipt Checklist

Client: EET South Central Hall Environmental Analysis Laboratory

Job Number: 160-52697-1 SDG Number: 2312E31

List Source: Eurofins St. Louis

1/25/2024

Login Number: 52697 List Number: 1

Creator: Thornley, Richard W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Definitions/Glossary

Client: EET South Central Hall Environmental Analysis Laboratory

Job ID: 160-52697-1 Project/Site: Standard Rad Analysis SDG: 2312E31

Qualifiers

R	a	d	
	ч	u	

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Method Summary

Client: EET South Central Hall Environmental Analysis Laboratory

Project/Site: Standard Rad Analysis

Job I	ID: 160-52697	-1
	SDG: 2312E	31

Method	Method Description	Protocol	Laboratory
900.0	Gross Alpha and Gross Beta Radioactivity	EPA	EET SL
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Evaporation	Preparation, Evaporation	None	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

3

4

5

0

9

10

11

12

Sample Summary

Client: EET South Central Hall Environmental Analysis Laboratory Project/Site: Standard Rad Analysis

Job ID: 160-52697-1 SDG: 2312E31

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-52697-1	2312E31-001N/RR9R	Water	12/27/23 13:14	12/28/23 09:10

Client Sample Results

Client: EET South Central Hall Environmental Analysis Laboratory

Method: EPA 900.0 - Gross Alpha and Gross Beta Radioactivity

Job ID: 160-52697-1 Project/Site: Standard Rad Analysis SDG: 2312E31

Client Sample ID: 2312E31-001N/RR9R

Lab Sample ID: 160-52697-1 Date Collected: 12/27/23 13:14 **Matrix: Water**

Date Received: 12/28/23 09:10

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Gross Alpha	3.59		1.63	1.68	3.00	1.99	pCi/L	01/02/24 09:08	01/18/24 11:23	1
Gross Beta	2.30		0.725	0.760	4.00	0.878	pCi/L	01/02/24 09:08	01/18/24 11:23	1
Analida	D It	0	Count Uncert.	Total Uncert.	ъ.		119	D	Amakanad	D'' E
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.108	U	0.0961	0.0966	1.00	0.146	pCi/L	01/02/24 11:10	01/24/24 11:49	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.9		30 - 110					01/02/24 11:10	01/24/24 11:49	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.715		0.439	0.443	1.00	0.638	pCi/L	01/02/24 11:14	01/18/24 11:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.9		30 - 110					01/02/24 11:14	01/18/24 11:38	1
Y Carrier	77.0		30 - 110					01/02/24 11:14	01/18/24 11:38	1

Method: 900.0 - Gross Alpha and Gross Beta Radioactivity

Client: EET South Central Hall Environmental Analysis Laboratory

Lab Sample ID: MB 160-642691/1-A

Matrix: Water

Analysis Batch: 644701

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 642691

				Count	Total						
		MB	MB	Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
	Gross Alpha	-0.3283	U	0.379	0.381	3.00	0.901	pCi/L	01/02/24 09:08	01/18/24 07:41	1
L	Gross Beta	0.5801	U	0.508	0.512	4.00	0.812	pCi/L	01/02/24 09:08	01/18/24 07:41	1

Lab Sample ID: LCS 160-642691/2-A

Matrix: Water

Analysis Batch: 644701

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 642691

10

Total %Rec **Spike** LCS LCS Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Gross Alpha 3.00 49.3 57.24 8.23 1.73 pCi/L 116 75 - 125

Lab Sample ID: LCSB 160-642691/3-A

Matrix: Water

Analysis Batch: 644701

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 642691

Total Spike LCSB LCSB Uncert. %Rec Added Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Gross Beta 72.1 71.37 7.67 4.00 0.878 pCi/L 99 75 - 125

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-642705/1-A

Matrix: Water

Analysis Batch: 645440

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 642705

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 -0.03135 U 0.0829 0.0829 1.00 0.176 pCi/L 01/02/24 11:10 01/24/24 11:53

 MB MB

 Carrier
 %Yield Ba Carrier
 Qualifier Ba Carrier
 Limits 30 - 110
 Prepared 01/02/24 11:10
 Analyzed 01/24/24 11:53
 Dil Fac 01/02/24 11:10
 O1/02/24 11:10
 O1/24/24 11:53
 1

Lab Sample ID: LCS 160-642705/2-A

Matrix: Water

Analysis Batch: 645441

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 642705

Total Spike LCS LCS Uncert. %Rec Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.3 11.30 1.19 1.00 0.155 pCi/L 100 75 - 125

LCS LCS

 Carrier
 %Yield Ba Carrier
 Qualifier Space
 Limits Space

 87.6
 30 - 110

Eurofins St. Louis

Client: EET South Central Hall Environmental Analysis Laboratory

Project/Site: Standard Rad Analysis

Job ID: 160-52697-1 SDG: 2312E31

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: 160-52697-1 DU

Matrix: Water

Analysis Batch: 645441

Client Sample ID: 2312E31-001N/RR9R

Prep Type: Total/NA

Prep Batch: 642705

			iotai					
Sample	Sample D	U DU	Uncert.					RER
Analyte Result	Qual Resu	lt Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
Radium-226 0.108	U 0.0329	1 U	0.0735	1.00	0.134	pCi/L	0.44	1

Total

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 82.6 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-642707/1-A

Matrix: Water

Analysis Batch: 644701

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 642707

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.05854 0.565 pCi/L 01/02/24 11:14 01/18/24 11:38 0.310 0.310 1.00

MB MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 30 - 110 Ba Carrier 87 1 01/02/24 11:14 01/18/24 11:38 1 Y Carrier 78.9 30 - 110 01/02/24 11:14 01/18/24 11:38

Lab Sample ID: LCS 160-642707/2-A

Matrix: Water

Analysis Batch: 644701

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 642707

Total Spike LCS LCS Uncert. %Rec Added Analyte Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-228 9.29 10.58 1.41 1.00 0.505 pCi/L 114 75 - 125

LCS LCS Carrier %Yield Qualifier Limits 87.6 30 - 110 Ba Carrier Y Carrier 79.6 30 - 110

Lab Sample ID: 160-52697-1 DU

Matrix: Water

Analysis Batch: 644701

Client Sample ID: 2312E31-001N/RR9R

Prep Type: Total/NA Prep Batch: 642707

Total DU DU Sample Sample Uncert. **RER MDC** Unit Analyte Result Qual Result Qual $(2\sigma + / -)$ RL RER Limit Radium-228 0.715 0.3176 U 0.342 1.00 0.552 pCi/L 0.51

DU DU Carrier %Yield Qualifier Limits Ba Carrier 82.6 30 - 110 Y Carrier 76.3 30 - 110

Eurofins St. Louis

QC Association Summary

Client: EET South Central Hall Environmental Analysis Laboratory

Project/Site: Standard Rad Analysis

Job ID: 160-52697-1 SDG: 2312E31

Rad

Prep Batch: 642691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-52697-1	2312E31-001N/RR9R	Total/NA	Water	Evaporation	
MB 160-642691/1-A	Method Blank	Total/NA	Water	Evaporation	
LCS 160-642691/2-A	Lab Control Sample	Total/NA	Water	Evaporation	
LCSB 160-642691/3-A	Lab Control Sample	Total/NA	Water	Evaporation	

Prep Batch: 642705

Lab Sample ID 160-52697-1	Client Sample ID 2312E31-001N/RR9R	Prep Type Total/NA	Matrix Water	Method PrecSep-21	Prep Batch
MB 160-642705/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-642705/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-52697-1 DU	2312E31-001N/RR9R	Total/NA	Water	PrecSep-21	

Prep Batch: 642707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-52697-1	2312E31-001N/RR9R	Total/NA	Water	PrecSep_0	
MB 160-642707/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-642707/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-52697-1 DU	2312E31-001N/RR9R	Total/NA	Water	PrecSep 0	

Tracer/Carrier Summary

Client: EET South Central Hall Environmental Analysis Laboratory

Job ID: 160-52697-1 Project/Site: Standard Rad Analysis SDG: 2312E31

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
160-52697-1	2312E31-001N/RR9R	76.9	
160-52697-1 DU	2312E31-001N/RR9R	82.6	
LCS 160-642705/2-A	Lab Control Sample	87.6	
MB 160-642705/1-A	Method Blank	87.1	
Tracer/Carrier Legen	d		
Ba = Ba Carrier			

Method: 904.0 - Radium-228 (GFPC)

Prep Type: Total/NA **Matrix: Water**

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-52697-1	2312E31-001N/RR9R	76.9	77.0	
160-52697-1 DU	2312E31-001N/RR9R	82.6	76.3	
LCS 160-642707/2-A	Lab Control Sample	87.6	79.6	
MB 160-642707/1-A	Method Blank	87.1	78.9	

Ba = Ba Carrier

Y = Y Carrier

Eurofins St. Louis

Hall Environmental Analysis Laboratory, Inc.

SampType: LCSLL

WO#: 2312E31

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: LCSLL-79718

Sample ID:	MB-79718	Samp	Туре: МЕ	BLK	Tes	PA Method	200.7: Metals				
Client ID:	PBW	Batc	h ID: 79 7	718	F	RunNo: 102271					
Prep Date:	1/3/2024	Analysis I	Date: 1/4	4/2024	5	SeqNo: 37	775776	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		ND	0.020								
Barium		ND	0.0030								
Beryllium		ND	0.0020								
Cadmium		ND	0.0020								
Calcium		ND	1.0								
Chromium		ND	0.0060								
Iron		ND	0.050								
Magnesium		ND	1.0								
Manganese		ND	0.0020								
Potassium		ND	1.0								
Silver		ND	0.0050								
Sodium		ND	1.0								
Zinc		ND	0.010								

Client ID:	BatchQC	Bato	ch ID: 797	718	F	RunNo: 10	02271				
Prep Date:	1/3/2024	Analysis	Date: 1/4	4/2024	5	SeqNo: 37	775777	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		ND	0.020	0.01000	0	129	50	150			
Barium		ND	0.0030	0.002000	0	85.0	50	150			
Beryllium		ND	0.0020	0.002000	0	99.6	50	150			
Cadmium		0.0020	0.0020	0.002000	0	102	50	150			
Calcium		ND	1.0	0.5000	0	96.1	50	150			
Chromium		ND	0.0060	0.006000	0	86.4	50	150			
Iron		ND	0.050	0.02000	0	106	50	150			
Magnesium		ND	1.0	0.5000	0	100	50	150			
Manganese		ND	0.0020	0.002000	0	95.6	50	150			
Potassium		ND	1.0	0.5000	0	117	50	150			
Silver		ND	0.0050	0.005000	0	89.2	50	150			
Sodium		ND	1.0	0.5000	0	93.3	50	150			
Zinc		0.021	0.010	0.01000	0	214	50	150			S

TestCode: EPA Method 200.7: Metals

Sample ID: LCS-79718	SampType: LCS			Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: LCSW	Batch ID: 79718			F)2271					
Prep Date: 1/3/2024	Analysis I	Date: 1/4	1/2024	SeqNo: 3775778			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.53	0.020	0.5000	0	106	85	115			
Barium	0.50	0.0030	0.5000	0	99.8	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: LCS-79718	Samp	Туре: LC	s	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: LCSW	Bate	ch ID: 797	718	F	RunNo: 1 (02271				
Prep Date: 1/3/2024	Analysis Date: 1/4/2024			5	SeqNo: 3775778 Uni					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Beryllium	0.51	0.0020	0.5000	0	101	85	115			
Cadmium	0.49	0.0020	0.5000	0	97.1	85	115			
Calcium	49	1.0	50.00	0	98.8	85	115			
Chromium	0.48	0.0060	0.5000	0	96.9	85	115			
Iron	0.50	0.050	0.5000	0	99.5	85	115			
Magnesium	50	1.0	50.00	0	101	85	115			
Manganese	0.48	0.0020	0.5000	0	96.8	85	115			
Potassium	49	1.0	50.00	0	97.8	85	115			
Silver	0.096	0.0050	0.1000	0	95.6	85	115			
Sodium	48	1.0	50.00	0	96.3	85	115			
Zinc	0.51	0.010	0.5000	0	102	85	115			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312E31

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID:	Sample ID: 2312E31-001DMSLL SampType: MS				Tes	tCode: EF	PA 200.8: N	letals			
Client ID:	Client ID: RR9R Batch ID: 79718				F	02245					
Prep Date:	1/3/2024	Analysis	Date: 1/4	1/2024	5	SeqNo: 37	774730	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.031	0.00050	0.02500	0.006517	99.7	70	130			
Lead		0.012	0.00050	0.01250	0.0001191	92.7	70	130			
Selenium		0.023	0.0010	0.02500	0.001065	88.2	70	130			
Thallium		0.012	0.00025	0.01250	0	92.6	70	130			
Uranium		0.013	0.00050	0.01250	0.001276	91.6	70	130			

Sample ID:	2312E31-001DMSDL	_ Samp	Type: MS	D	Tes	tCode: EF	PA 200.8: M				
Client ID:	RR9R	Bate	ch ID: 797	' 18	F	RunNo: 1 ()2245				
Prep Date:	1/3/2024	Analysis	Date: 1/4	4/2024	5	SeqNo: 37	774731				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.032	0.00050	0.02500	0.006517	102	70	130	1.91	20	
Lead		0.012	0.00050	0.01250	0.0001191	93.4	70	130	0.733	20	
Selenium		0.024	0.0010	0.02500	0.001065	91.8	70	130	3.82	20	
Thallium		0.012	0.00025	0.01250	0	93.8	70	130	1.33	20	
Uranium		0.013	0.00050	0.01250	0.001276	92.6	70	130	0.925	20	

Sample ID: MB-79718	SampType: MBLK	TestCode: EPA 200.8: N	Metals
Client ID: PBW	Batch ID: 79718	RunNo: 102245	
Prep Date: 1/3/2024	Analysis Date: 1/4/2024	SeqNo: 3774762	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Copper	ND 0.00050		
Lead	ND 0.00050		

Copper	ND	0.00050
Lead	ND	0.00050
Selenium	ND	0.0010
Thallium	ND	0.00025
Uranium	ND	0.00050

Sample ID: MSLCSLL-79718	Samp	SampType: LCSLL			tCode: Ef	PA 200.8: M	letals			
Client ID: BatchQC	Bato	Batch ID: 79718			RunNo: 10	02245				
Prep Date: 1/3/2024	Analysis	Date: 1/4	4/2024	9	SeqNo: 37	774764	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead	ND	0.00050	0.0005000	0	98.4	50	150			
Selenium	0.0011	0.0010	0.001000	0	106	50	150			
Hranium	ND	0.00050	0.0005000	0	02.0	50	150			

•							
Lead	ND	0.00050	0.0005000	0	98.4	50	150
Selenium	0.0011	0.0010	0.001000	0	106	50	150
Uranium	ND	0.00050	0.0005000	0	92.0	50	150

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 5 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312E31

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID:	MSLCS-79718	SampType	: LCS	TestCode: EPA 200.8: Metals						
Client ID:	LCSW	Batch ID:	79718	i	RunNo: 1 (02245				
Prep Date:	1/3/2024	Analysis Date:	1/4/2024	;	SeqNo: 37	774765	Units: mg/L			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.024 0.00	050 0.02500	0	96.5	85	115			
Lead		0.012 0.00	050 0.01250	0	96.4	85	115			
Selenium		0.023 0.0	0.02500	0	92.8	85	115			
Thallium		0.012 0.00	0.01250	0	98.4	85	115			
Uranium		0.012 0.00	050 0.01250	0	93.8	85	115			
Sample ID:	MSLCSLL-TL-79	718 SampType	: LCSLL	Tes	stCode: EF	PA 200.8: M				
Client ID:	BatchQC	Batch ID:	79718	RunNo: 102245						
Prep Date:	1/3/2024	Analysis Date:	1/4/2024	SeqNo: 3774767			Units: mg/L			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		ND 0.00	050 0.0005000	0	82.4	50	150			
Thallium		ND 0.00	025 0.0002500	0	97.9	50	150			
Sample ID:	MB-79718	SampType	: MBLK	Tes	stCode: EF	PA 200.8: M				
Client ID:	PBW	Batch ID:	79718	ı	RunNo: 10	02283				
Prep Date:	1/3/2024	Analysis Date:	1/5/2024	;	SeqNo: 37	776402	Units: mg/L			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND 0.00	050							
Sample ID:	MSLCS-79718	SampType	: LCS	Tes	stCode: EF	PA 200.8: M	etals			
Client ID:	LCSW	Batch ID:	79718	i	RunNo: 1 (02283				
Prep Date:	1/3/2024	Analysis Date:	1/5/2024	:	SeqNo: 37	776404	Units: mg/L			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.025 0.00	050 0.02500	0	100	85	115			
Sample ID:	MSLCSLL-TL-79	718 SampType	LCSLL	Tes	stCode: EF	PA 200.8: M	etals			
Client ID:	BatchQC	Batch ID:	79718	RunNo: 102283						
Prep Date:	1/3/2024	Analysis Date:	1/5/2024	;	SeqNo: 37	776405	Units: mg/L			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND 0.00	050 0.0005000	0	82.8	50	150			

Qualifiers:

Analyte

Client ID:

Prep Date:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Sample ID: MB-79799

PBW

1/9/2024

% Recovery outside of standard limits. If undiluted results may be estimated.

SampType: MBLK

Batch ID: 79799

Analysis Date: 1/12/2024

PQL

Result

Analyte detected in the associated Method Blank

TestCode: EPA 200.8: Metals

LowLimit

Units: mg/L

HighLimit

%RPD

RunNo: 102417

SeqNo: 3783177

- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

SPK value SPK Ref Val %REC

Page 6 of 15

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: MB-79799 SampType: MBLK TestCode: EPA 200.8: Metals

Client ID: PBW Batch ID: 79799 RunNo: 102417

Prep Date: 1/9/2024 Analysis Date: 1/12/2024 SeqNo: 3783177 Units: mq/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Antimony ND 0.0010

Sample ID: MSLCSLL-79799 SampType: LCSLL TestCode: EPA 200.8: Metals

Client ID: BatchQC Batch ID: 79799 RunNo: 102417

Prep Date: 1/9/2024 Analysis Date: 1/12/2024 SeqNo: 3783178 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Antimony 0.0011 0.0010 0.001000 0 106 50 150

Sample ID: MSLCS-79799 SampType: LCS TestCode: EPA 200.8: Metals

Client ID: LCSW Batch ID: 79799 RunNo: 102417

Prep Date: 1/9/2024 Analysis Date: 1/12/2024 SeqNo: 3783179 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Antimony 0.026 0.0010 0.02500 0 102 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312E31

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: MB-79910 SampType: MBLK TestCode: EPA Method 245.1: Mercury

PBW Client ID: Batch ID: 79910 RunNo: 102509

Prep Date: 1/15/2024 Analysis Date: 1/17/2024 SeqNo: 3786575 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte LowLimit

Mercury ND 0.00020

Sample ID: LCSLL-79910 SampType: LCSLL TestCode: EPA Method 245.1: Mercury

Client ID: **BatchQC** Batch ID: 79910 RunNo: 102509

Prep Date: 1/15/2024 Analysis Date: 1/17/2024 SeqNo: 3786576 Units: mg/L

Analyte %REC %RPD **RPDLimit** Result PQL SPK value SPK Ref Val LowLimit HighLimit Qual

Mercury ND 0.00020 0.0001500 90.1 150

Sample ID: LCS-79910 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 79910 RunNo: 102509

Prep Date: Analysis Date: 1/17/2024 SeqNo: 3786577 Units: mg/L 1/15/2024

SPK value SPK Ref Val Analyte PQL %REC HighLimit %RPD **RPDLimit** Qual Result I owl imit

0.0049 0.00020 0.005000 0 Mercury

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 8 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: MB-79716 SampType: MBLK TestCode: SM 2540 C: Total Dissolved Solids

Client ID: PBW Batch ID: 79716 RunNo: 102240

Prep Date: 1/3/2024 Analysis Date: 1/4/2024 SeqNo: 3774356 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 50.0

Sample ID: LCS-79716 SampType: LCS TestCode: SM 2540 C: Total Dissolved Solids

Client ID: LCSW Batch ID: 79716 RunNo: 102240

Prep Date: 1/3/2024 Analysis Date: 1/4/2024 SeqNo: 3774357 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 996 50.0 1000 0 99.6 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: MB	SampT	SampType: MBLK			tCode: EF	PA Method				
Client ID: PBW	Batch	Batch ID: R102147			RunNo: 10	02147				
Prep Date:	Analysis D	Analysis Date: 12/27/2023			SeqNo: 37	770289	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								

Sample ID: LCS	mple ID: LCS SampType: LCS				TestCode: EPA Method 300.0: Anions						
Client ID: LCSW	Batch	n ID: R1	02147	F	02147						
Prep Date:	Analysis D	Date: 12	/27/2023	5	SeqNo: 3770290 Units:						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	0.49	0.10	0.5000	0	97.2	90	110				
Chloride	4.9	0.50	5.000	0	97.1	90	110				
Nitrogen, Nitrite (As N)	0.99	0.10	1.000	0	99.2	90	110				
Nitrogen, Nitrate (As N)	2.6	0.10	2.500	0	102	90	110				
Sulfate	9.8	0.50	10.00	0	98.4	90	110				

Sample ID: 2312E31-001CMS	Samp1	Гуре: МЅ	;	TestCode: EPA Method 300.0: Anions						
Client ID: RR9R	Batcl	h ID: R1	02147	F	RunNo: 10	02147				
Prep Date:	Analysis [Date: 12	/27/2023	5	SeqNo: 37	770311	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.85	0.10	0.5000	0.4062	87.9	70	130			
Chloride	9.1	0.50	5.000	4.127	99.6	80	120			
Nitrogen, Nitrite (As N)	0.96	0.10	1.000	0	95.5	80	120			
Nitrogen, Nitrate (As N)	4.2	0.10	2.500	1.646	104	80	120			

Sample ID: 2312E31-	OO1CMSD Sampi	ype: MS	SD .	I es	l'estCode: EPA Method 300.0: Anions					
Client ID: RR9R	Batch	n ID: R1	02147	F	RunNo: 10	2147				
Prep Date:	Analysis D)ate: 12	2/27/2023	5	SeqNo: 37	770312	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.85	0.10	0.5000	0.4062	88.7	70	130	0.431	20	
Chloride	9.1	0.50	5.000	4.127	100	80	120	0.484	20	
Nitrogen, Nitrite (As N)	0.96	0.10	1.000	0	95.8	80	120	0.291	20	
Nitrogen, Nitrate (As N)	4.3	0.10	2.500	1.646	105	80	120	0.455	20	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

8 % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: 62.5ng lcs	SampType: LCS			Tes	TestCode: PURGEABLE ORGANICS by EPA 524					
Client ID: LCSW	Batch	n ID: R1	02225	RunNo: 102225						
Prep Date:	Analysis D)ate: 1/3	3/2024	(SeqNo: 37	773814	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	2.5	0.50	2.500	0	102	70	130			
Carbon tetrachloride	2.7	0.50	2.500	0	107	70	130			
Chlorobenzene	2.4	0.50	2.500	0	97.7	70	130			
cis-1,2-Dichloroethene	2.6	0.50	2.500	0	104	70	130			
1,2-Dichlorobenzene	2.6	0.50	2.500	0	103	70	130			
1,4-Dichlorobenzene	2.6	0.50	2.500	0	106	70	130			
1,2-Dichloroethane	2.2	0.50	2.500	0	87.0	70	130			
1,1-Dichloroethene	2.6	0.50	2.500	0	106	70	130			
1,2-Dichloropropane	2.4	0.50	2.500	0	94.9	70	130			
Ethylbenzene	2.4	0.50	2.500	0	96.1	70	130			
Methylene chloride	2.5	0.50	2.500	0	102	70	130			
Styrene	2.3	0.50	2.500	0	91.1	70	130			
Tetrachloroethene	2.9	0.50	2.500	0	118	70	130			
Toluene	2.4	0.50	2.500	0	94.9	70	130			
trans-1,2-Dichloroethene	2.7	0.50	2.500	0	109	70	130			
1,2,4-Trichlorobenzene	2.3	0.50	2.500	0	92.9	70	130			
1,1,1-Trichloroethane	2.7	0.50	2.500	0	106	70	130			
1,1,2-Trichloroethane	2.3	0.50	2.500	0	90.1	70	130			
Trichloroethene	2.7	0.50	2.500	0	108	70	130			
Vinyl chloride	2.8	0.50	2.500	0	111	70	130			
Total Xylenes	7.6	0.50	7.500	0	101	70	130			
Surr: 1,2-Dichlorobenzene-d4	2.1		2.000		105	70	130			
Surr: 4-Bromofluorobenzene	2.3		2.000		116	70	130			

Sample ID: mb	SampType: MBLK TestCode: PURGE.				e: PURGEABLE ORGANICS by EPA 524						
Client ID: PBW	Batch	1D: R1 0	02225	F	RunNo: 1 (02225					
Prep Date:	Analysis D	ate: 1/3	3/2024	9	SeqNo: 37	773815	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	0.50									
Carbon tetrachloride	ND	0.50									
Chlorobenzene	ND	0.50									
cis-1,2-Dichloroethene	ND	0.50									
1,2-Dichlorobenzene	ND	0.50									
1,4-Dichlorobenzene	ND	0.50									
1,2-Dichloroethane	ND	0.50									
1,1-Dichloroethene	ND	0.50									
1,2-Dichloropropane	ND	0.50									
Ethylbenzene	ND	0.50									

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: mb	SampType: MBLK			TestCode: PURGEABLE ORGANICS by EPA 524							
Client ID: PBW	Batch ID: R102225			F	RunNo: 102225						
Prep Date:	Analysis D	Date: 1/3	3/2024	SeqNo: 3773815		Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Methylene chloride	ND	0.50									
Styrene	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
1,2,4-Trichlorobenzene	ND	0.50									
1,1,1-Trichloroethane	ND	0.50									
1,1,2-Trichloroethane	ND	0.50									
Trichloroethene	ND	0.50									
Vinyl chloride	ND	0.50									
Total Xylenes	ND	0.50									
Surr: 1,2-Dichlorobenzene-d4	1.8		2.000		89.2	70	130				
Surr: 4-Bromofluorobenzene	1.8		2.000		90.7	70	130				

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: MB-79632 SampType: MBLK TestCode: SM 9223B Total Coliform

Client ID: PBW Batch ID: 79632 RunNo: 102133

Prep Date: 12/27/2023 Analysis Date: 12/28/2023 SeqNo: 3769543 Units: P/A

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Coliform Absent 0

E. Coli Absent 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

%RPD

RPDLimit

Qual

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Sample ID: MB-1 Alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R102142 RunNo: 102142

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769911 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-1 Alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R102142 RunNo: 102142

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769912 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit

Total Alkalinity (as CaCO3) 77.76 20.00 80.00 0 97.2 90 110

Sample ID: MB-2 Alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R102142 RunNo: 102142

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769934 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-2 Alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R102142 RunNo: 102142

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769935 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.32 20.00 80.00 0 97.9 90 110

Sample ID: MB-3 Alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R102142 RunNo: 102142

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769956 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-3 Alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R102142 RunNo: 102142

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769957 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.40 20.00 80.00 0 98.0 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 15

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312E31**

7.56

20

05-Feb-24

Client: Hydro Resources RM

Project: Rio Rancho

Turbidity

Sample ID: MB SampType: MBLK TestCode: EPA Method 180.1: Turbidity

Client ID: PBW Batch ID: R102127 RunNo: 102127

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769427 Units: NTU

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Turbidity ND 0.50

Sample ID: 2312E31-001CDUP SampType: DUP TestCode: EPA Method 180.1: Turbidity

Client ID: RR9R Batch ID: R102127 RunNo: 102127

0.50

Prep Date: Analysis Date: 12/28/2023 SeqNo: 3769429 Units: NTU

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 2312E31 RcptNo: 1 Client Name: Hydro Resources RM Received By: 12/27/2023 2:40:00 PM Juan Rojas 12/27/2023 2:52:24 PM Completed By: Cheyenne Cason 12/27/23 @ 15:25 Reviewed By: Chain of Custody No 🗌 Not Present Yes 🔽 1. Is Chain of Custody complete? 2. How was the sample delivered? Client Log In NA Yes 🗹 No 3. Was an attempt made to cool the samples? No 🗸 NA 🔲 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗌 Samples were collected the same day and chilled. Yes 🗸 No 📗 Sample(s) in proper container(s)? No 🗌 Yes 🗸 6. Sufficient sample volume for indicated test(s)? No 🗌 Yes 🗸 7. Are samples (except VOA and ONG) properly preserved? No 🗹 NA 🗌 Yes 🗌 8. Was preservative added to bottles? NA 🗌 No 🗌 Yes 🗸 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes 🗌 No 🗸 10. Were any sample containers received broken? # of preserved bottles checked for pH: Yes 🔽 No 🗔 11. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Me No 🗌 Yes 🗸 12. Are matrices correctly identified on Chain of Custody? No 🗌 Yes 🗸 13. Is it clear what analyses were requested? Checked by: ONC 12/21/3 No 🗌 Yes 🔽 14. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) NA 🗸 Yes 🗌 No 🗌 15. Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Signed By Cooler No Temp ºC Condition Seal Intact | Seal No Seal Date 17.2 Good Not Present Morty

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	## EDB (Method 504.1) PAHs by 8310 or 8270SIMS Battle Br, NO ₂ , PO ₄ , SO ₄ Br, MO ₃ , NO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₂ , PO ₄ , SO ₄ Br, MO ₃ , MO ₃
490 Tel	## Perficides/8082 PCB's ## A Perficience PCB
Turn-Around Time: Standard Rush Project Name: RANCHO	Project Manager: Sampler: RC10 FIANCILLAS On Ice: Dives Divo Multiple Dollars: I Signatura Divos # of Coolers: Divos Divos Container Preservative HEAL No. Type and # Type Container Preservative HEAL No. Type and # Type Container Preservative HEAL No. Type and # Type Countainer Preservative HEAL No. Type and # Type Container Preservative HEAL No. Type and # Type Container Preservative HEAL No. Type and # Type Countainer Preservative HEAL No. VGVIGUS V
Stody CXXCE	Matrix Matrix A Cop of a Cop o

Desiree Dominguez

From:

Rocio Mancillas <rmancillas@shomaker.com>

Sent:

Wednesday, December 27, 2023 8:31 AM

To:

Desiree Dominguez

Subject:

RE: Bottle Kit

You don't often get email from rmancillas@shomaker.com. Learn why this is important

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Desiree,

This is what the specs call for:

microorganism/turbidity						
contaminant	MCL (mg/L)					
total coliforms	zero					
E. coli	zero					
fecal coliform	zero					
turbidity	n/a					

inorganic chemicals					
contaminant	MCL (mg/L)				
antimony	0.006				
<u>arsenic</u>	0				
asbestos (fiber > 10 micrometers)	7 million fibers per liter (MFL)				
<u>barium</u>	2				
beryllium	0.004				
<u>cadmium</u>	0.005				
chromium (total)	0.1				
copper	1.3				
cyanide (as free cyanide)	0.2				
fluoride	4.0				
lead	zero				
mercury (inorganic)	0.002				

radionuclides					
contaminant	MCL- (mg/L)				
alpha particles	15 picocuries per Liter (pCi/L)				
beta particles and photon emitters	4 millirems per year				
radium 226 and Radium 228 (combined)	5 pCi/L				
uranium	30 ug/L as of 12/08/03				

other	parameters
contaminant	secondary standard
aluminum	0.05 to 0.2 mg/L
alkalinity	none
<mark>bic</mark> arbonate	none
<u>calcium</u>	none
chloride	250 mg/L
color	15 (color units)
copper	1.0 mg/L
corrosivity	noncorrosive
fluoride	2.0 mg/L
foaming agents	0.5 mg/L
iron	0.3 mg/L
magnesium	none
manganese	0.05 mg/L
odor	3 threshold odor number
potassium	none
рН	6.5-8.5
silver	0.10 mg/L
sodium	none
sulfate	250 mg/L
total dissolved solids	500 mg/L
zinc	5 mg/L

MCL - maximum contaminant level

mg/L - milligrams per liter

We only have 1 cooler with

1) 4 amber bottles

Appendix C. Species List

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New Mexico Ecological Services Field Office 2105 Osuna Road Ne Albuquerque, NM 87113-1001 Phone: (505) 346-2525 Fax: (505) 346-2542

In Reply Refer To: 02/17/2025 18:56:45 UTC

Project Code: 2025-0057408

Project Name: Well 9R King BLVD

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

Thank you for your recent request for information on federally listed species and important wildlife habitats that may occur in your project area. The U.S. Fish and Wildlife Service (Service) has responsibility for certain species of New Mexico wildlife under the Endangered Species Act (ESA) of 1973 as amended (16 USC 1531 et seq.), the Migratory Bird Treaty Act as amended (16 USC 701-715), and the Bald and Golden Eagle Protection Act as amended (16 USC 668-668(c)). We are providing the following guidance to assist you in determining which federally imperiled species may or may not occur within your project area, and to recommend some conservation measures that can be included in your project design.

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the ESA of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the ESA, the accuracy of this species list should be verified after 90 days. The Service recommends that verification be completed by visiting the IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the IPaC system by completing the same process used to receive the enclosed list.

The purpose of the ESA is to provide a means whereby threatened and endangered species and

Project code: 2025-0057408

the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the ESA and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (NEPA; 42 USC 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at https://www.fws.gov/sites/default/files/documents/endangered-species-consultation-handbook.pdf.

Candidate Species and Other Sensitive Species

A list of candidate and other sensitive species in your area is also attached. Candidate species and other sensitive species are species that have no legal protection under the ESA, although we recommend that candidate and other sensitive species be included in your surveys and considered for planning purposes. The Service monitors the status of these species. If significant declines occur, these species could potentially be listed. Therefore, actions that may contribute to their decline should be avoided.

Lists of sensitive species including State-listed endangered and threatened species are compiled by New Mexico State agencies. These lists, along with species information, can be found at the following websites.

Biota Information System of New Mexico (BISON-M): www.bison-m.org

New Mexico State Forestry. The New Mexico Endangered Plant Program: https://www.emnrd.nm.gov/sfd/rare-plants/

New Mexico Rare Plant Technical Council, New Mexico Rare Plants: nmrareplants.unm.edu

Natural Heritage New Mexico, online species database: nhnm.unm.edu

WETLANDS AND FLOODPLAINS

Project code: 2025-0057408

Under Executive Orders 11988 and 11990, Federal agencies are required to minimize the destruction, loss, or degradation of wetlands and floodplains, and preserve and enhance their natural and beneficial values. These habitats should be conserved through avoidance, or mitigated to ensure that there would be no net loss of wetlands function and value.

We encourage you to use the National Wetland Inventory (NWI) maps in conjunction with ground-truthing to identify wetlands occurring in your project area. The Service's NWI program website, www.fws.gov/wetlands/Data/Mapper.html, integrates digital map data with other resource information. We also recommend you contact the U.S. Army Corps of Engineers for permitting requirements under section 404 of the Clean Water Act if your proposed action could impact floodplains or wetlands.

MIGRATORY BIRDS

In addition to responsibilities to protect threatened and endangered species under the ESA, there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the Service (50 CFR 10.12 and 16 USC 668(a)). For more information regarding these Acts, see https://www.fws.gov/program/migratory-bird-permit/what-we-do.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a Federal nexus) or a Bird/Eagle Conservation Plan (when there is no Federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures, see https://www.fws.gov/library/collections/threats-birds. We also recommend review of the Birds of Conservation Concern list (https://www.fws.gov/media/birds-conservation-concern-2021) to fully evaluate the effects to the birds at your site. This list identifies migratory and non-migratory bird species (beyond those already designated as federally threatened or endangered) that represent top conservation priorities for the Service, and are potentially threatened by disturbance, habitat impacts, or other project development activities.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 thereby provides additional protection for both migratory birds and migratory bird habitat. Please visit https://www.fws.gov/partner/council-conservation-migratory-birds for information regarding the implementation of Executive Order 13186.

We suggest you contact the New Mexico Department of Game and Fish, and the New Mexico Energy, Minerals, and Natural Resources Department, Forestry Division for information regarding State protected and at-risk species fish, wildlife, and plants.

For further consultation with the Service we recommend submitting inquiries or assessments electronically to our incoming email box at nmesfo@fws.gov, where it will be more promptly routed to the appropriate biologist for review.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Project code: 2025-0057408

Official Species List

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New Mexico Ecological Services Field Office 2105 Osuna Road Ne Albuquerque, NM 87113-1001 (505) 346-2525

PROJECT SUMMARY

Project code: 2025-0057408

Project Code: 2025-0057408 Project Name:

Well 9R King BLVD

Project Type: Water Supply Pipeline - New Constr - Below Ground

Project Description: The project involves PH II Well equipping, arsenic treatment, and

construction of a waterline extension between Well 9R and the intersection of King Blvd. and Rainbow Blvd. in southern Sandoval

county.

Project Location:

The approximate location of the project can be viewed in Google Maps: https:// www.google.com/maps/@35.322118,-106.77195586393651,14z

Counties: Sandoval County, New Mexico

ENDANGERED SPECIES ACT SPECIES

Project code: 2025-0057408

There is a total of 7 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME STATUS

Mexican Wolf Canis lupus baileyi

Endangered

Population: Wherever found, except where listed as an experimental population

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/3916

New Mexico Meadow Jumping Mouse Zapus hudsonius luteus

Endangered

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/7965

BIRDS

NAME STATUS

Mexican Spotted Owl Strix occidentalis lucida

Threatened

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/8196

Southwestern Willow Flycatcher *Empidonax traillii extimus*Endangered

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/6749

Threatened

Yellow-billed Cuckoo Coccyzus americanus

Population: Western U.S. DPS

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/3911

INSECTS

NAME STATUS

Monarch Butterfly *Danaus plexippus*

Proposed

There is **proposed** critical habitat for this species. Your location does not overlap the critical

habitat.

Threatened

Species profile: https://ecos.fws.gov/ecp/species/9743

Suckley's Cuckoo Bumble Bee Bombus suckleyi

Proposed

Population:

Endangered

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/10885

CRITICAL HABITATS

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

YOU ARE STILL REQUIRED TO DETERMINE IF YOUR PROJECT(S) MAY HAVE EFFECTS ON ALL ABOVE LISTED SPECIES.

Project code: 2025-0057408 02/17/2025 18:56:45 UTC

IPAC USER CONTACT INFORMATION

Agency: Private Entity
Name: John Searles
Address: P.O. BOX 45193
City: RIO RANCHO

State: NM Zip: 87174

Email searles@rockymountainecology.com

Phone: 5053217676

SPECIES STATUS REPORT

Taxonomic Group# SpeciesTaxonomic Group# SpeciesBirds7

TOTAL SPECIES: 7

Common Name	<u>Scientific Name</u>	<u>NMGF</u>	<u>USFWS</u>	Critical <u>Habitat</u>	SGON	<u>Photo</u>
Costa's Hummingbird	Calypte costae	T			Y	ant Col
Bald Eagle	Haliaeetus leucocephalus	T			Υ	Pets Josel Bud
Peregrine Falcon	Falco peregrinus	T			Υ	
Northern Beardless-Tyrannulet	Camptostoma imberbe ridgwayi	E			Y	
Bell's Vireo	Vireo bellii	T			Υ	Roman Sees
<u>Gray Vireo</u>	Vireo vicinior	T			Y	
Baird's Sparrow	Centronyx bairdii	T			Y	

Appendix D. Cultural Resources

Per 54 U.S.C. § 307103, cultural resources locations are confidential. Maps and other locational information are redacted from this document.

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, ALBUQUERQUE DISTRICT 4101 JEFFERSON PLAZA NE ALBUQUERQUE, NM 87109-3435

HPD Log #125263 Received 4/22/2025

April 22, 2025

Planning, Project and Program Management Division Planning Branch Environmental Resources Section

Michelle M. Ensey State Historic Preservation Officer New Mexico Department of Cultural Affairs Historic Preservation Division Bataan Memorial Building 407 Galisteo Street, Suite 236 Santa Fe, New Mexico 87501

Dear Ms. Ensey:

Pursuant to 36 CFR Part 800, the U.S. Army Corps of Engineers, Albuquerque District (USACE, the Corps) seeks your concurrence on a determination of **No Historic Properties Affected** for the proposed installation of a new waterline and repairs to a municipal well along King Blvd in Rio Rancho, New Mexico (Enclosure 1).

USACE in cooperation with, and at the request of the City of Rio Rancho (CoRR), is planning the Replacement Well 9R – PH II Well Equipping, Arsenic Treatment, and King Blvd Waterline Extension (Project) to improve critical water supply infrastructure to the CoRR. The work would be conducted under Section 595 of the Water Resources Development Act of 1999 (Public Law 106-53) as amended. The Act authorizes the Corps to provide aid in the form of design and construction for water-related environmental infrastructure, resource protection, and development projects in Idaho, Montana, rural Nevada, New Mexico, and rural Utah.

The proposed project area is located in Rio Rancho, Sandoval County, New Mexico. The project is located west of the Northern Meadows neighborhood in western Rio Rancho. Well 9 occurs approximately 3.4 miles west of the intersection of King and Rainbow Blvd, and is where the water tank and well improvements would occur. The new waterline would be placed within the King Blvd right of way and extend from Well 9 to the King/Rainbow Blvd intersection (Enclosure 1). All project elements remain within the CoRR municipal boundary, and access can be gained from the Unser/King Blvd intersection. The legal description for the project area is Township 13N; Range 1E; Section 25, and Township 13N; Range 1E; Sections 28 – 31, and 33. The site was developed in the mid 1980's. The current facilities are over 30 years old and are deteriorating. Well 9 was never equipped to meet its permit limits, and the well hole is not straight, resulting in maintenance issues. The well has seen a decrease in production due to sanding and is susceptible to power outages.

The CoRR planned the design and construction of overall project improvements required for Well 9 in three phases over a minimum of five years. Upgrades began with Phase I (new 3 MG Reservoir only) completed in April 2023. Phase II - Geohydrology / Well Re-drilling began in October 2022 and was completed in January

2024. Construction on this well began in July of 2023 and the final well video survey was performed in January of 2024.

Phase III (Proposed Action) consists of re-equipping the new well, arsenic treatment, and a new Water Transmission Main in King Blvd. Design of Phase III began in January 2025 with an anticipated construction start early in 2026. The CoRR proposed to install a new section of waterline between a newly redrilled Well 9 and an existing water system (Enclosure 1). The proposed waterline would extend from the newly redrilled Well 9 in Section 25 of Township 13 North, Range 1 east south and then east, passing through Section 31, 30, 29, 28 and 33 to join existing water infrastructure at the end of the currently paved portion of King Blvd. NW in Rio Rancho. Except for a 600 m long segment in Section 25 and 24, it will be installed within the beds of three existing unpaved roads (King Blvd NW, Serenade St. NW, and Phoenix Rd. NW.). The total area of disturbance would be 33.4 acres and the trench for the pipe would be excavated with heavy machinery at a depth of at least 3 ft. Construction activities related to the Proposed Action would be conducted with standard equipment including, but not limited to backhoes, excavators, a front-end loader, trenchers, compaction equipment, and water trucks. Land ownership includes CoRR land within the existing Well 9, as well as the recently acquired adjacent lands for site expansion.

An Environmental Assessment has been completed by Rocky Mountain Ecology LLC in February 2025 and Tribal scoping letters were sent to all consulting parties listed below. A pedestrian cultural resources survey (NMCRIS #157812) was performed in January 2025 by Aspen Cultural Resource Management, where two historic sites were identified: historic artifact scatter (LA 206047) and a historic earthen tank (HCPI 55122) were located (Enclosures 3 & 4). The survey report provided by Aspen, "Archaeological Survey of Proposed Waterline Extension, Rio Rancho, Sandoval County, New Mexico", is attached to the email with this letter. CoRR will be submitting updated attachments to NMCRIS. The NIAF is provided as Enclosure 5 to this letter. Neither one of these resources meet eligibility requirements for the National Register of Historic Places. No archaeological resources were located during the survey. Therefore, USACE determines that the proposed undertaking would result in **No Historic Properties Affected**.

USACE will send consultation letters to your office and the following tribes: Comanche Nation of Oklahoma, Jicarilla Apache Nation, Kewa Pueblo, Navajo Nation, Ohkay Owingeh, Pueblo de Cochiti, Pueblo of Isleta, Pueblo of Jemez, Pueblo of Laguna, Pueblo of San Felipe, Pueblo of San Ildefonso, Pueblo of Sandia, Pueblo of Santa Ana, Pueblo of Santa Clara, Pueblo of Tesuque, Pueblo of Zia, and The Hopi Tribe.

If you have any questions or require additional information, please contact Corps Albuquerque District archaeologist Kaitlyn Fuqua at kaitlyn.n.fuqua@usace.army.mil, or me at danielle.a.galloway@usace.army.mil or at (505) 342-3661. Thank you very much for your attention to this matter.

Sincerely:

Concur, No Historic Properties Affected

Danielle Galloway

Chief, Environmental Resources Section

Danielle A. Galloway

for the New Mexico State Historic Preservation Officer

Enclosures

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, ALBUQUERQUE DISTRICT 4101 JEFFERSON PLAZA NE ALBUQUERQUE, NM 87109-3435

March 28, 2025

Planning, Project and Program Management Division Planning Branch Environmental Resources Section

Chairman Mark Woommavovah Comanche Nation of Oklahoma Post Office Box 908 Lawton, Oklahoma 73502

Dear Chairman Woommavovah:

The United States Army Corps of Engineers (USACE), Albuquerque District in cooperation with, and at the request of the City of Rio Rancho (CoRR), is planning the Replacement Well 9R – PH II Well Equipping, Arsenic Treatment, and King Blvd Waterline Extension (Project) to improve critical water supply infrastructure to the CoRR. The work would be conducted under Section 595 of the Water Resources Development Act of 1999 (Public Law 106-53) as amended. The Act authorizes the Corps to provide aid in the form of design and construction for water-related environmental infrastructure, resource protection, and development projects in Idaho, Montana, rural Nevada, New Mexico, and rural Utah.

The proposed project area is located in Rio Rancho, Sandoval County, New Mexico. The project is located west of the Northern Meadows neighborhood in western Rio Rancho. Well 9 occurs approximately 3.4 miles west of the intersection of King and Rainbow Blvd, and is where the water tank and well improvements would occur. The new waterline would be placed within the King Blvd right of way and extend from Well 9 to the King/Rainbow Blvd intersection (Enclosure 1). All project elements remain within the CoRR municipal boundary, and access can be gained from the Unser/King Blvd intersection. The legal description for the project area is Township 13N; Range 1E; Section 25, and Township 13N; Range 1E; Sections 28 – 31, and 33. The site was developed in the mid 1980's. The current facilities are over 30 years old and are deteriorating. Well 9 was never equipped to meet its permit limits, and the well hole is not straight, resulting in maintenance issues. The well has seen a decrease in production due to sanding and is susceptible to power outages.

The CoRR planned the design and construction of overall project improvements required for Well 9 in three phases over a minimum of five years. Upgrades began with Phase I (new 3 MG Reservoir only) completed in April 2023. Phase II - Geohydrology / Well Re-drilling began in October 2022 and was completed in January 2024. Construction on this well began in July of 2023 and the final well video survey was performed in January of 2024.

Phase III (Proposed Action) consists of re-equipping the new well, arsenic treatment, and a new Water Transmission Main in King Blvd. Design of Phase III began in January 2025 with an anticipated construction start early in 2026. The CoRR proposed to install a new section of waterline between a newly redrilled Well 9 and an existing water system (Enclosure 1). The proposed waterline would extend from the newly redrilled Well 9 in Section 25 of Township 13 North, Range 1 east south and then east, passing through Section 31, 30, 29, 28 and 33 to join existing water infrastructure at the end of the currently paved portion of King Blvd. NW in Rio Rancho. Except for a 600 m long segment in Section 25 and 24, it will be installed within the beds of three existing unpaved roads (King Blvd NW, Serenade St. NW, and Phoenix Rd. NW.). The total

area of disturbance would be 33.4 acres and the trench for the pipe would be excavated with heavy machinery at a depth of at least 3 ft. Construction activities related to the Proposed Action would be conducted with standard equipment including, but not limited to backhoes, excavators, a front-end loader, trenchers, compaction equipment, and water trucks. Land ownership includes CoRR land within the existing Well 9, as well as the recently acquired adjacent lands for site expansion.

An Environmental Assessment has been completed by Rocky Mountain Ecology LLC in February 2025 and scoping letters were sent to all consulting parties listed below. A pedestrian cultural resources survey was performed in January 2025 by Aspen Cultural Resource Management, where a historic artifact scatter and a historic earthen tank were located (Enclosures 3 & 4). Neither one of these resources meet eligibility requirements for the National Register of Historic Places. No archaeological resources were located during the survey. Therefore, USACE determines that the proposed undertaking would result in **No Historic Properties Affected**.

The purpose of this scoping letter is to provide you with the opportunity to submit concerns or comments regarding potential effects. Specifically, we welcome any comments you may have regarding the environmental such as natural, biological, or cultural resources; wildlife, vegetation, and special status species; air, water, or sound quality; aesthetics; health and safety; Traditional Cultural Properties; or Indian Trust Assets that may occur within or adjacent to the project area.

USACE will send consultation letters to the New Mexico State Historic Preservation Office and the following tribes: Comanche Nation of Oklahoma, Jicarilla Apache Nation, Kewa Pueblo, Navajo Nation, Ohkay Owingeh, Pueblo de Cochiti, Pueblo of Isleta, Pueblo of Jemez, Pueblo of Laguna, Pueblo of San Felipe, Pueblo of San Ildefonso, Pueblo of Sandia, Pueblo of Santa Ana, Pueblo of Santa Clara, Pueblo of Tesuque, Pueblo of Zia, and The Hopi Tribe.

If you have any questions or require additional information, please contact Corps Albuquerque District archaeologist Kaitlyn Fuqua at kaitlyn.n.fuqua@usace.army.mil, or me at danielle.a.galloway@usace.army.mil or at (505) 342-3661. Thank you very much for your attention to this matter.

Sincerely:

Danielle Galloway

Chief, Environmental Resources Section

Danielle A. Galloway

Enclosures

From: Greg Kaufman

To: Fuqua, Kaitlyn N CIV USARMY CESPA (USA); Shannon Montoya

Subject: [Non-DoD Source] RE: USACE Rio Rancho King Blvd Well and Waterline Consultation: Pueblo of Sandia

Date: Wednesday, March 26, 2025 3:28:39 PM

Attachments: <u>image001.png</u>

Kaitlyn –

The Pueblo of Sandia has no objection to the waterline project and does not require further consultation.

Thanks, Greg

Greg Kaufman
Environment Director
Pueblo of Sandia
481 Sandia Loop
Bernalillo, NM 87004
gkaufman@sandiapueblo.nsn.us

Office: 505-771-5080 Cell: 505-340-7616

From: Fuqua, Kaitlyn N CIV USARMY CESPA (USA) <Kaitlyn.N.Fuqua@usace.army.mil>

Sent: Wednesday, March 26, 2025 12:37 PM

To: Shannon Montoya <snmontoya@sandiapueblo.nsn.us> **Cc:** Greg Kaufman <gkaufman@sandiapueblo.nsn.us>

Subject: USACE Rio Rancho King Blvd Well and Waterline Consultation: Pueblo of Sandia

The U.S. Army Corps of Engineers (Corps), Albuquerque District, is planning the Replacement Well 9R – PH II Well Equipping, Arsenic Treatment, and King Blvd Waterline Extension to improve critical water supply infrastructure to the City of Rio Rancho. The proposed project area is located in Rio Rancho, Sandoval County, New Mexico. The project is located west of the Northern Meadows neighborhood in western Rio Rancho. Well 9 occurs approximately 3.4 miles west of the intersection of King and Rainbow Blvd, and is where the water tank and well improvements would occur. The new waterline would be placed within the King Blvd right of way and extend from Well 9 to the King/Rainbow Blvd intersection. The purpose of this scoping

letter is to provide you with the opportunity to submit concerns or comments regarding potential effects. The Corps respectfully requests that comments be submitted by **April 28**, **2025.** Please feel free to contact me with any questions or comments regarding this project.

Kaitlyn Fuqua

Archaeologist
U.S. Army Corps of Engineers
Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, NM 87109
Kaitlyn.N.Fuqua@usace.army.mil

From: Fuqua, Kaitlyn N CIV USARMY CESPA (USA)

To: pstout@sfpueblo.com; rortiz@sfpueblo.com

Cc: lortiz@sfpueblo.com

Subject: RE: replacement Well9R-PH II Well, Equipping Arsenic Treatment, and King BLVD Waterline Extension

Date: Monday, April 14, 2025 12:44:00 PM

Attachments: <u>image001.png</u>

Hello Mr. Stout and Mr. Ortiz,

Thank you for responding to the request for consultation for the Replacement of Well9R-PH II and King Blvd waterline extension project in Rio Rancho. What kind of additional information about the project can I provide? Additionally, do you have any concerns or comments about the project? Feel free to reach out to me for any information, we can also arrange a time this week for a phone call, if you prefer.

Thank you,

Kaitlyn Fuqua

Archaeologist
U.S. Army Corps of Engineers
Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, NM 87109

Kaitlyn.N.Fuqua@usace.army.mil

From: Clayton P. Bowers

bowers@rockymountainecology.com>

Sent: Monday, April 14, 2025 10:46 AM

To: Fugua, Kaitlyn N CIV USARMY CESPA (USA) <Kaitlyn.N.Fugua@usace.army.mil>

Subject: [Non-DoD Source] Fw: replacement Well9R-PH II Well, Equipping Arsenic Treatment, and

King BLVD Waterline Extension

Hi Kaitlyn,

We received this message from the Pueblo of San Felipe. I imagine you also reached out to them as part of your tribal consultation but wanted to pass this along.

Thanks!

Clay

From: Leon Ortiz < <u>lortiz@sfpueblo.com</u>>

Sent: Friday, April 11, 2025 16:32

To: Clayton P. Bowers < bowers@rockymountainecology.com >

Cc: Pinu'u Stout <<u>pstout@sfpueblo.com</u>>; Ricardo Ortiz <<u>ROrtiz@sfpueblo.com</u>>

Subject: replacement Well9R-PH II Well, Equipping Arsenic Treatment, and King BLVD Waterline

Extension

Good Afternoon,

The Pueblo of San Felipe has received your letter that was dated February 19th, 2025, regarding construction of the 3 MG

Steel Reservoir, and drilling and equipping a new well, including a new Arsenic Treatment Facility and water Transmission

Main. We are interested to consult and to be involved in the planning process.

Thank you for reaching out to the Pueblo of San Felipe.

We require additional information and communication on this project.

Please contact Pinu'u Stout, Natural Resources Director and Ricardo Ortiz, Tribal Historic Preservation Officer, both cc'd here.

Thank you

Leon Ortiz THPO Monitor 127 Hagen Road San Felipe Pueblo, NM 87001

Pueblo of Cochiti PO Box 70 Cochiti Pueblo, NM 87072 February 18, 2025

RE: Replacement Well 9R - PH II Well Equipping, Arsenic Treatment, and King BLVD Waterline Extension

To Whom It May Concern:

The City of Rio Rancho is seeking funding assistance to update and expand Well Site 9. Rio Rancho has identified this site as a critical facility for existing and future operations. We are gathering information for an environmental review of the referenced project. The project location is depicted on the attached maps.

Site 9 currently includes a well, reservoir, and arsenic treatment facility. The project area is located in Sandoval County, west of the City limits, adjacent to and north of King Boulevard. The City intends to design and construct the overall project improvements required for Site 9 in three phases over a minimum of five years. The City does not have any outstanding debt related to any aspect of the Site 9 proposed improvements. The City self-funded the engineering and land acquisition for Phase 1 and procured a loan from the United States Army Corps of Engineers for the construction of the 3 MG steel reservoir. The City has committed to a loan to finance the design and construction of Phases II and III through the United States Army Corps of Engineers for the construction. Phases II and III consist of drilling and equipping a new well, including a new arsenic treatment facility and water transmission main.

The City has contracted with Huitt-Zollars, Inc. (HZI) for design of this system. Rocky Mountain Ecology, LLC (RME) is preparing an environmental assessment to comply with the National Environmental Policy Act. RME is gathering information for an environmental review of the proposed project, which requires coordination with stakeholders. This letter initiates the Section 106 consultation process to determine whether the proposed project has the potential to disturb areas considered important or culturally significant. Culturally significant areas might include traditional plant use areas, traditional mineral areas, shrines or important geologic formations, archeological sites, or any areas deemed culturally significant. We would appreciate your determination whether there are religious or cultural ties to the project area. We also need to know if you have any concerns regarding any potential impacts that may result from the proposed project.

Surveys for cultural and biological resources were conducted during February of 2025. We have made an initial determination that this project will not have a significant environmental impact within the context of the National Environmental Policy Act. Please provide your comments by completing and returning a copy of the acknowledgement via email to: bowers@rockymountainecology.com, or by mail at P.O. Box 45193, Rio Rancho, NM 87174.

To provide verbal comments or for more information, please contact me at 575.639.3883 or by email.

Clayton Bowers, Director - Rocky Mountain Ecology LLC

ACKNOWLEDGEMENT:

As a representative for the referenced organization, the undersigned acknowledges receipt of this request for comment, and having reviewed the attached project summary and additional information, if provided,

□ concurs with the initial determination, or, □	has no comments.
Signature:	Date:
Name:	Title:

PUEBLO OF ISLETA

FEB 2 8 2025

Cultural & Historic Preservation RECEIVED

FEB 24

Pueblo of Isleta Governor's Office syronmental Consulting & RME

February 19, 2025

Pueblo of Isleta PO Box 1270 Isleta Pueblo, NM 87022

RE: Replacement Well 9R - PH II Well Equipping, Arsenic Treatment, and King BLVD Waterline Extension

To Whom It May Concern:

The City of Rio Rancho is seeking funding assistance to <u>update and expand Well Site 9</u>. Rio Rancho has identified this site as a critical facility for existing and future operations. We are gathering information for an environmental review of the referenced project. The project location is depicted on the attached maps.

Site 9 currently includes a well, reservoir, and arsenic treatment facility. The project area is located in Sandoval County, west of the City limits, adjacent to and north of King Boulevard. The City intends to design and construct the overall project improvements required for Site 9 in three phases over a minimum of five years. The City does not have any outstanding debt related to any aspect of the Site 9 proposed improvements. The City self-funded the engineering and land acquisition for Phase 1 and procured a loan from the United States Army Corps of Engineers for the construction of the 3 MG steel reservoir. The City has committed to a loan to finance the design and construction of Phases II and III through the United States Army Corps of Engineers for the construction. Phases II and III consist of drilling and equipping a new well, including a new arsenic treatment facility and water transmission main.

The City has contracted with Huitt-Zollars, Inc. (HZI) for design of this system. Rocky Mountain Ecology, LLC (RME) is preparing an environmental assessment to comply with the National Environmental Policy Act. RME is gathering information for an environmental review of the proposed project, which requires coordination with stakeholders. This letter initiates the Section 106 consultation process to determine whether the proposed project has the potential to disturb areas considered important or culturally significant. Culturally significant areas might include traditional plant use areas, traditional mineral areas, shrines or important geologic formations, archeological sites, or any areas deemed culturally significant. We would appreciate your determination whether there are religious or cultural ties to the project area. We also need to know if you have any concerns regarding any potential impacts that may result from the proposed project.

Surveys for cultural and biological resources were conducted during February of 2025. We have made an initial determination that this project will not have a significant environmental impact within the context of the National Environmental Policy Act. Please provide your comments by completing and returning a copy of the acknowledgement via email to: bowers@rockymountainecology.com, or by mail at P.O. Box 45193, Rio Rancho, NM 87174.

To provide verbal comments or for more information, please contact me at 575.639.3883 or by email.

Clayton Bowers, Director - Rocky Mountain Ecology LLC

ACKNOWLEDGEMENT:

As a representative for the referenced organization, the undersigned acknowledges receipt of this request for comment, and having reviewed the attached project summary and additional information, if provided,

concurs with the initial determination, or, has no comments.

Signature:

, ,

Name: Henry Walt

Date

Pull ETIL

P.O. Box 45193 Rio Rancho, NM 87174

(575) 639-3883 bowers@rockymountainecology.com

COMANCHE NATION

Rocky Mountain Ecology Environmental Consulting & Applied Restoration Services Attn: Mr. Clayton Bowers P.O. Box 45193 New Mexico 87

March 11, 2025

Re: The City of Rio Rancho, New Mexico – Replacement Well 9R – PH 11 Well Equipping, Arsenic Treatment, and King Blvd Waterline Extension

Dear Mr. Bowers:

In response to your request, the above reference project has been reviewed by staff of this office to identify areas that may potentially contain prehistoric or historic archeological materials. The location of your project has been cross referenced with the Comanche Nation site files, where an indication of "*No Properties*" have been identified. (IAW 36 CFR 800.4(d)(1)).

Please contact this office at (580) 492-1153) if you require additional information on this project.

This review is perf174ormed in order to identify and preserve the Comanche Nation and State cultural heritage, in conjunction with the State Historic Preservation Office.

Regards

Comanche Nation Historic Preservation Office Theodore E. Villicana, Technician #6 SW "D" Avenue, Suite C Lawton, OK. 73502 Pueblo of Sandia 481 Sandia Loop Bernalillo, NM 87004 March 24, 2020

RE: Construction of a New Water Storage Tank located at Well Site 9 Project

To Whom It May Concern:

The City of Rio Rancho has received funding for the Construction of a New Water Storage Tank located at Well Site 9 Project. We are gathering information for an environmental review of the referenced project. The project is described in the attached project summary sheet and the location is depicted on the attached maps.

Reservoir 9 is filled by Well 9 which was constructed in 1984. Reservoir 9 is located west of City Center, outside City limits, off King Boulevard, in Sandoval County. Over the years, Well 9 has seen decreased production, and the existing 200,000-gallon ground storage tank has recently been inspected and is recommended for replacement. Therefore, it is proposed that 1) the existing Tank 9 be replaced with a new tank sized to provide adequate storage capacity and redundancy, working in conjunction with Tank 13; 2) re-drill Well 9 and increase its yield up to permitted limits; and 3) adding additional arsenic treatment capacity to the existing treatment facility, if required.

The City has contracted with Huitt-Zollars, Inc. (HZI) for design of this system. Rocky Mountain Ecology, LLC (RME) is preparing an environmental information document to comply with the National Environmental Policy Act (NEPA). RME is gathering information for an environmental review of the proposed project, which requires coordination with stakeholders. This letter initiates the Section 106 consultation process to determine whether the proposed project has the potential to disturb areas considered important or culturally significant. Culturally significant areas might include traditional plant use areas, traditional mineral areas, shrines or important geologic formations, archeological sites, or any areas deemed culturally significant. We would appreciate your determination whether there are religious or cultural ties to the project area. We also need to know if you have any concerns regarding any potential impacts that may result from the proposed project.

Surveys for cultural and biological resources were conducted during March of 2020. We have made an initial determination that this project will not have a significant environmental impact within the context of the NEPA. Please provide your comments by completing and returning a copy of the acknowledgement via email to: knox@rockymountainecology.com, or by mail at P.O. Box 45193, Rio Rancho, NM 87174.

To provide verbal comments or for more information, please contact me at 505.992.6150 or by email.

Shawn C. Knox, Principal - Rocky Mountain Ecology LLC

ACKNOWLEDGEMENT:

As a representative for the referenced organization, the undersigned acknowledges receipt of this request for comment, and having reviewed the attached project summary and additional information, if provided,

concurs with the initial determination, or,	has no comments.
Signature:	Date:
Name:	Title:

Subject Fwd: Rocky Mountain Ecology-Construction of a New Water Storage Tank located at Well Site 9 Project

Date 2020-04-08 11:29

- image002.png (~7 KB)
- 20200408-Rocky Mountain Ecology-Construction of a New Water Storage Tank located at Well Site 9 Project-966320200408.pdf (~1.2 MB)

Shawn C. Knox www.rockymountainecology.com 505.992.6150

Begin forwarded message:

From: "Richard M. Begay" <r.begay@navajo-nsn.gov>

Date: April 8, 2020 at 1:16:27 PM EDT

To: "knox@rockymountainecology.com" <knox@rockymountainecology.com>

Cc: Timothy Begay <tbegay@navajo-nsn.gov>

Subject: FW: Rocky Mountain Ecology-Construction of a New Water Storage Tank located at

Well Site 9 Project

Good morning sir,

I reviewed the information for the proposed undertaking and do not have any concerns or questions. Please proceed with the project without further consultation with the Navajo Nation.

Thank you,

Richard M Begay, THPO

NN Heritage and Historic Preservation Dep't

From: Brian Begaye

begaye@navajo-nsn.gov>

Sent: Wednesday, April 8, 2020 10:36 AM

To: Richard M. Begay <r.begay@navajo-nsn.gov>; Rudolph R. Shebala

<rudyshebala@navajo-nsn.gov>

Cc: Jonathan Nez <jonathannez@navajo-nsn.gov>; Myron Lizer <myronlizer@navajo-nsn.gov>; Paulson Chaco <paulsonchaco@navajo-nsn.gov>; Milton Bluehouse Jr. <mbluehouse@navajo-nsn.gov>; James J. Davis, Jr <jjdavisjr@navajo-nsn.gov>; Christopher T. Bahe <cbahe@navajo-nsn.gov>; Sharon Yazzie <shyazzie@navajo-nsn.gov>; Sarah L. Woodie-Jackson

<swoodie-jackson@navajo-nsn.gov>; Ettie Anderson <eanderson@navajo-nsn.gov>
Subject: Rocky Mountain Ecology-Construction of a New Water Storage Tank located
at Well Site 9 Project

FWD: NN Division of Natural Resources.

File attached.

Ahéhee',

(Thank you)

Brian Begaye II

Administrative Assistant

THE NAVAJO NATION

Office of the President & Vice President

P.O. Box 7440 | 100 Parkway | Window Rock, AZ 86515

Office: (928) 871-7000 | Facsimile: (928) 871-4025

E-mail: <u>bbegaye@navajo-nsn.gov</u>

This message is intended only for the use of the Addressee and may contain information that is PRIVILEGED and CONFIDENTIAL. If you are not the intended recipient, please delete the email and inform the sender immediately. Thank you.

Please consider the environment before printing this document.

image002.png~7 KB<u>Show</u> <u>Download</u>

Appendix E.

Environmental Data Resources (EDR) Radius Map Report

Corr Well 9 King Blvd Rio Rancho, NM 87144

Inquiry Number: 7931293.2s

March 19, 2025

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map	2
Detail Map.	. 3
Map Findings Summary	4
Map Findings	8
Orphan Summary	10
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	,
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	
Physical Setting SSURGO Soil Map.	A-5
Physical Setting Source Map	A-11
Physical Setting Source Map Findings	A-13
Physical Setting Source Records Searched	PSGR-1

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2025 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E1527 - 21), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E2247 - 16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E1528 - 22) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

KING BLVD RIO RANCHO, NM 87144

COORDINATES

Latitude (North): 35.3200200 - 35° 19' 12.07" Longitude (West): 106.7618380 - 106° 45' 42.61"

Universal Tranverse Mercator: Zone 13 UTM X (Meters): 339845.6 UTM Y (Meters): 3909758.2

Elevation: 5917 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 14565935 ARROYO DE LAS CALABACILLAS, NM

Version Date: 2020

East Map: 14565981 LOMA MACHETE, NM

Version Date: 2020

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20200608 Source: USDA

MAPPED SITES SUMMARY

Target Property Address: KING BLVD RIO RANCHO, NM 87144

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
1	RIO RANCHO WELL 9R	UNICORN CIRCLE NW	ECHO	Higher	79, 0.015, West
A2	KAFB PBR NO.2, TARGE		UXO	Higher	6165, 1.168, NNW
A3	PBR-2 TARGET N-5		FUDS	Higher	6165, 1.168, NNW

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Supe	rfund) sites
NPL	_ National Priority List
Proposed NPL	Proposed National Priority List Sites
NPL LIENS	- Federal Superfund Liens
Lists of Federal Delisted Ni	PL sites
Delisted NPL	National Priority List Deletions
-	ct to CERCLA removals and CERCLA orders
	Federal Facility Site Information listing
SEMS	_ Superfund Enterprise Management System
Lists of Federal CERCLA s	ites with NFRAP
	Superfund Enterprise Management System Archive
SEIVIS-ARCHIVE	- Superfulld Efferprise Management System Archive
Lists of Federal RCRA facil	lities undergoing Corrective Action
CORRACTS	Corrective Action Report
Lists of Federal RCRA TSD	facilities
RCRA-TSDF	RCRA - Treatment, Storage and Disposal
Lists of Federal RCRA gene	erators
RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-VSQG	RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators)
	Generalors)
Federal institutional contro	ols / engineering controls registries
	Land Use Control Information System
200.0	Land Coo Control Information Cyclem

US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROLS...... Institutional Controls Sites List

Federal ERNS list

ERNS..... Emergency Response Notification System

Lists of state- and tribal hazardous waste facilities

SCS...... State Cleanup Sites Listing

SHWS...... This state does not maintain a SHWS list. See the Federal CERCLIS list and Federal

NPL list.

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF..... Solid Waste Facilities

Lists of state and tribal leaking storage tanks

LUST.....Leaking Underground Storage Tank Prioritization Database

LAST.....Leaking Aboveground Storage Tank Sites

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

LTANKS..... Leaking Storage Tank Listing

Lists of state and tribal registered storage tanks

FEMA UST...... Underground Storage Tank Listing UST...... Listing of Underground Storage Tanks

AST..... Aboveground Storage Tanks List

INDIAN UST...... Underground Storage Tanks on Indian Land

TANKS..... Storage Tank Facility Listing

State and tribal institutional control / engineering control registries

INST CONTROL..... Sites with Institutional Controls

Lists of state and tribal voluntary cleanup sites

INDIAN VCP...... Voluntary Cleanup Priority Listing VCP...... Voluntary Remediation Program Sites

Lists of state and tribal brownfield sites

BROWNFIELDS..... Brownfields Site Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY...... Recycling Facility Listing

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands DEBRIS REGION 9..... Torres Martinez Reservation Illegal Dump Site Locations

ODI..... Open Dump Inventory IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

CDL...... Clandestine Drug Laboratory Listing US CDL...... National Clandestine Laboratory Register

Local Land Records

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS_____ Hazardous Materials Information Reporting System

SPILLS......Spill Data

Other Ascertainable Records

RCRA NonGen / NLR........ RCRA - Non Generators / No Longer Regulated

DOD...... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR..... Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

2020 COR ACTION...... 2020 Corrective Action Program List

TSCA...... Toxic Substances Control Act

TRIS...... Toxic Chemical Release Inventory System

SSTS..... Section 7 Tracking Systems ROD...... Records Of Decision RMP..... Risk Management Plans

RAATS......RCRA Administrative Action Tracking System

PRP......Potentially Responsible Parties PADS...... PCB Activity Database System

ICIS...... Integrated Compliance Information System

Act)/TSCA (Toxic Substances Control Act)

Material Licensing Tracking System COAL ASH DOE..... Steam-Electric Plant Operation Data

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS...... Incident and Accident Data

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS...... Aerometric Information Retrieval System Facility Subsystem

US MINES..... Mines Master Index File

MINES MRDS..... Mineral Resources Data System

ABANDONED MINES...... Abandoned Mines

...... Facility Index System/Facility Registry System DOCKET HWC..... Hazardous Waste Compliance Docket Listing FUELS PROGRAM..... EPA Fuels Program Registered Listing

PFAS NPL..... Superfund Sites with PFAS Detections Information

PFAS FEDERAL SITES..... Federal Sites PFAS Information PFAS TRIS..... List of PFAS Added to the TRI

PFAS TSCA..... PFAS Manufacture and Imports Information

PFAS RCRA MANIFEST..... PFAS Transfers Identified In the RCRA Database Listing

PFAS ATSDR_____ PFAS Contamination Site Location Listing PFAS WQP..... Ambient Environmental Sampling for PFAS PFAS NPDES..... Clean Water Act Discharge Monitoring Information

PFAS PROJECT..... NORTHEASTERN UNIVERSITY PFAS PROJECT PFAS ECHO...... Facilities in Industries that May Be Handling PFAS Listing

PFAS ECHO FIRE TRAIN.... Facilities in Industries that May Be Handling PFAS Listing PFAS PT 139 AIRPORT..... All Certified Part 139 Airports PFAS Information Listing

AQUEOUS FOAM NRC...... Aqueous Foam Related Incidents Listing

BIOSOLIDS..... ICIS-NPDES Biosolids Facility Data

UST FINDER UST Finder Database
UST FINDER RELEASE UST Finder Releases Database

E MANIFEST..... Hazardous Waste Electronic Manifest System PFAS.......Per- and Polyfluoroalkyl Substances (PFAS) Data

AIRS..... Airs Information

ASBESTOS..... List of Asbestos Demolition and Renovations Jobs

DRYCLEANERS..... Drycleaner Facility Listing Financial Assurance Information MINES..... Coal Mine Permits Database NPDES..... List of Discharge Permits

UIC...... Underground Injection Control Listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP..... EDR Proprietary Manufactured Gas Plants EDR Hist Auto_____ EDR Exclusive Historical Auto Stations EDR Hist Cleaner EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

Recovered Government Archive Solid Waste Facilities List RGA LUST...... Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

FUDS: The Listing includes locations of Formerly Used Defense Sites Properties where the US Army Corps Of Engineers is actively working or will take necessary cleanup actions.

A review of the FUDS list, as provided by EDR, and dated 10/01/2024 has revealed that there is 1 FUDS site within approximately 1.5 miles of the target property.

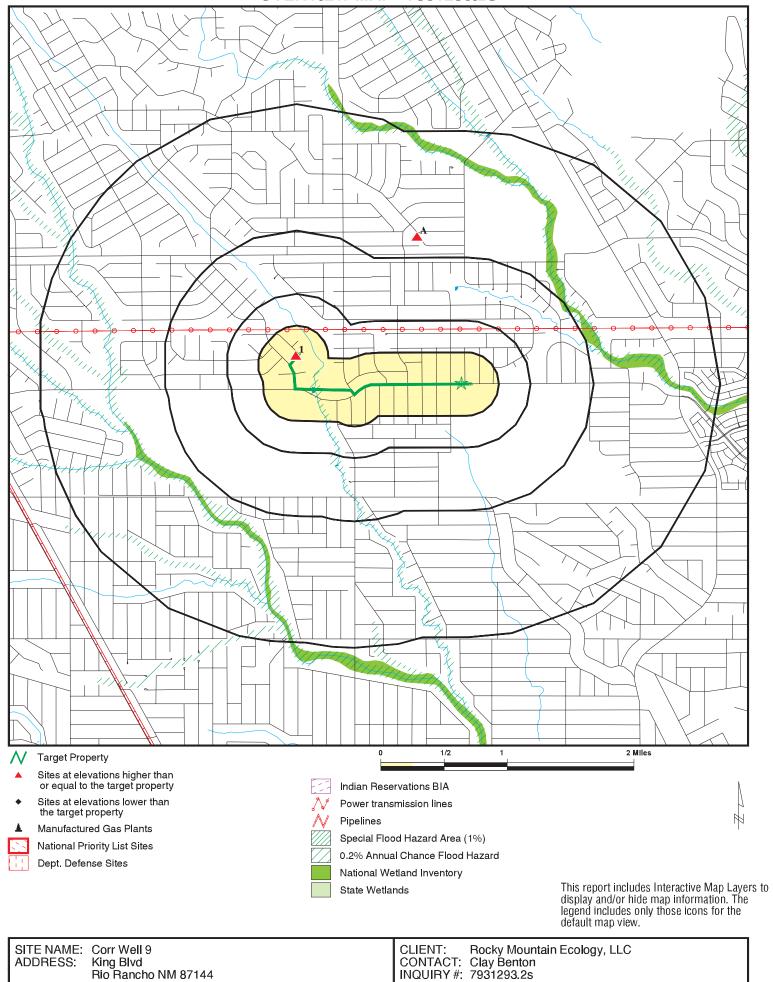
Equal/Higher Elevation	I/Higher Elevation Address		Map ID	Page	
PBR-2 TARGET N-5		NNW 1 - 2 (1.168 mi.)	A3	8	

UXO: A listing of unexploded ordnance site locations

A review of the UXO list, as provided by EDR, and dated 09/06/2023 has revealed that there is 1 UXO site within approximately 1.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
KAFB PBR NO.2, TARGE		NNW 1 - 2 (1.168 mi.)	A2	8

ECHO: ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.


A review of the ECHO list, as provided by EDR, and dated 12/21/2024 has revealed that there is 1 ECHO site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
RIO RANCHO WELL 9R Registry ID: 110071369521	UNICORN CIRCLE NW	W 0 - 1/8 (0.015 mi.)	1	8

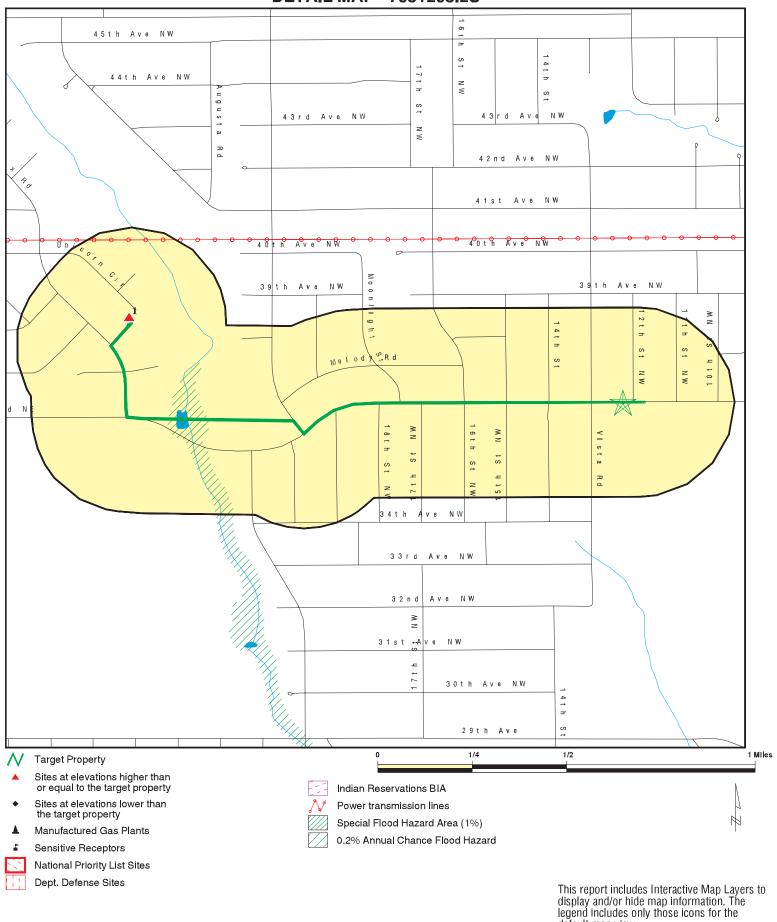
Due to poor or inadequate address information, the following sites were not mapped. Count: 8 records.

Site Name	Database(s)
UNM, CENTENNIAL ENGINEERING BLDG.	SCS
KAFB HANGAR 1002	SCS
KAFB BFF WELL DEVELOPMENT WATER KA	SCS
VISTA DEL NORTE	SCS
PROSPERITY & BROADWAY OIL SPILL	SEMS
WELL NO. 9 IMPROVEMENTS AND 3 MG R	FINDS, ECHO
3 MG RESERVOIR AND WELL 9 SITE IMP	FINDS, ECHO
WELL 9 REHABILITATION - WA 2164	ECHO

OVERVIEW MAP - 7931293.2S

Rio Rancho NM 87144

35.32002 / 106.761838


LAT/LONG:

March 19, 2025 12:36 pm Copyright © 2025 EDR, Inc. © 2015 TomTom Rel. 2015.

INQUIRY #:

DATE:

DETAIL MAP - 7931293.2S

SITE NAME: Corr Well 9

ADDRESS: King Blvd

Rio Rancho NM 87144

LAT/LONG: 35.32002 / 106.761838

CLIENT: Rocky Mountain Ecology, LLC

CONTACT: Clay Benton

INQUIRY #: 7931293.2s

DATE: March 19, 2025 12:36 pm

Copyright © 2025 EDR, Inc. © 2015 TomTom Rel. 2015.

default map view.

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	>1	Total Plotted
STANDARD ENVIRONMENTAL RECORDS								
Lists of Federal NPL (Su	perfund) site:	5						
NPL Proposed NPL NPL LIENS	1.500 1.500 1.500		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
Lists of Federal Delisted	NPL sites							
Delisted NPL	1.500		0	0	0	0	0	0
Lists of Federal sites sul CERCLA removals and C		rs						
FEDERAL FACILITY SEMS	1.000 1.000		0 0	0 0	0 0	0 0	NR NR	0 0
Lists of Federal CERCLA	sites with N	FRAP						
SEMS-ARCHIVE	1.000		0	0	0	0	NR	0
Lists of Federal RCRA fa undergoing Corrective A								
CORRACTS	1.500		0	0	0	0	0	0
Lists of Federal RCRA To	SD facilities							
RCRA-TSDF	1.000		0	0	0	0	NR	0
Lists of Federal RCRA ge	enerators							
RCRA-LQG RCRA-SQG RCRA-VSQG	0.750 0.750 0.750		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal institutional con engineering controls reg								
LUCIS US ENG CONTROLS US INST CONTROLS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal ERNS list								
ERNS	0.500		0	0	0	NR	NR	0
Lists of state- and tribal hazardous waste facilitie	es							
SCS SHWS	1.500 N/A		0 N/A	0 N/A	0 N/A	0 N/A	0 N/A	0 N/A
Lists of state and tribal la and solid waste disposal								
SWF/LF	1.000		0	0	0	0	NR	0
Lists of state and tribal le	eaking storag	je tanks						
LUST	1.000		0	0	0	0	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	<u>1/2 - 1</u>	> 1	Total Plotted
LAST INDIAN LUST LTANKS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Lists of state and tribal	registered sto	rage tanks						
FEMA UST UST AST INDIAN UST TANKS	0.750 0.750 0.750 0.750 0.750		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR NR	0 0 0 0
State and tribal institution control / engineering co		es						
INST CONTROL	1.000		0	0	0	0	NR	0
Lists of state and tribal	voluntary clea	anup sites						
INDIAN VCP VCP	1.000 1.000		0	0 0	0 0	0 0	NR NR	0 0
Lists of state and tribal	brownfield si	tes						
BROWNFIELDS	1.000		0	0	0	0	NR	0
ADDITIONAL ENVIRONME	NTAL RECORD	<u>s</u>						
Local Brownfield lists								
US BROWNFIELDS	1.000		0	0	0	0	NR	0
Local Lists of Landfill / Waste Disposal Sites	Solid							
SWRCY INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	1.000 1.000 1.000 1.000 1.000		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR NR	0 0 0 0
Local Lists of Hazardou Contaminated Sites	s waste/							
US HIST CDL CDL US CDL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Local Land Records								
LIENS 2	0.500		0	0	0	NR	NR	0
Records of Emergency	Release Repo	rts						
HMIRS SPILLS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Other Ascertainable Red	cords							
RCRA NonGen / NLR	0.750		0	0	0	0	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
FUDS	1.500		0	0	0	0	1	1
DOD	1.500		Ö	ő	Ö	Ö	Ö	Ö
SCRD DRYCLEANERS	1.000		0	0	0	Ö	NR	0
US FIN ASSUR	0.500		0	0	0	NR	NR	0
EPA WATCH LIST	0.500		0	0	0	NR	NR	0
2020 COR ACTION	0.750		0	0	0	0	NR	0
TSCA	0.500		0	0	0	NR	NR	0
TRIS	0.500		0	0	0	NR	NR	0
SSTS	0.500		0	0	0	NR	NR	0
ROD	1.500		0	0	0	0	0	0
RMP	0.500		0	0	0	NR	NR	0
RAATS	0.500		0	0	0	NR	NR	0
PRP	0.500		0	0	0	NR	NR	0
PADS	0.500		0	0	0	NR	NR	0
ICIS	0.500		0	0	0	NR	NR	0
FTTS MLTS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
COAL ASH DOE	0.500		0	0	0	NR	NR	0
COAL ASH EPA	1.000		0	0	0	0	NR	0
PCB TRANSFORMER	0.500		0	0	0	NR	NR	0
RADINFO	0.500		0	0	0	NR	NR	0
HIST FTTS	0.500		0	Ö	Ö	NR	NR	0
DOT OPS	0.500		Ö	ő	Ö	NR	NR	Ö
CONSENT	1.500		Ö	Ö	Ö	0	0	Ö
INDIAN RESERV	1.500		Ö	Ö	Ö	Ö	Ö	Ö
FUSRAP	1.500		Ō	0	Ō	Ö	Ö	Ō
UMTRA	1.000		0	0	0	0	NR	0
LEAD SMELTERS	0.500		0	0	0	NR	NR	0
US AIRS	0.500		0	0	0	NR	NR	0
US MINES	0.750		0	0	0	0	NR	0
MINES MRDS	0.500		0	0	0	NR	NR	0
ABANDONED MINES	0.750		0	0	0	0	NR	0
FINDS	0.500		0	0	0	NR	NR	0
UXO	1.500		0	0	0	0	1	1
ECHO	0.500		1	0	0	NR	NR	1
DOCKET HWC	0.500		0	0	0	NR	NR	0
FUELS PROGRAM	0.750		0	0	0	0	NR	0
PFAS NPL	0.750		0	0	0	0	NR	0
PFAS FEDERAL SITES	0.750		0	0	0	0	NR NR	0
PFAS TRIS	0.750		0	0	0	0		0
PFAS ISCA PFAS RCRA MANIFEST	0.750 0.750		0 0	0 0	0 0	0 0	NR NR	0 0
PFAS ATSDR	0.750		0	0	0	0	NR	0
PFAS WQP	0.750		0	0	0	0	NR	0
PFAS NPDES	0.750		0	0	0	0	NR	0
PFAS PROJECT	0.750		0	0	NR	NR	NR	0
PFAS ECHO	0.750		0	Ö	0	0	NR	0
PFAS ECHO FIRE TRAIN	0.750		Ő	ő	Ö	0	NR	Ő
PFAS PT 139 AIRPORT	0.750		Ö	Ö	Ö	Ö	NR	Ö
AQUEOUS FOAM NRC	0.750		Ő	ő	Ö	Ö	NR	Ő
BIOSOLIDS	0.500		0	0	0	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted			
UST FINDER	0.750		0	0	0	0	NR	0			
UST FINDER RELEASE	1.000		Ö	Ö	Ö	Ö	NR	Ö			
E MANIFEST	0.750		0	0	0	0	NR	0			
PFAS	0.750		0	0	0	0	NR	0			
AIRS	0.500		0	0	0	NR	NR	0			
ASBESTOS	0.500		0	0	0	NR	NR	0			
DRYCLEANERS	0.750		0	0	0	0	NR	0			
Financial Assurance	0.500		0	0	0	NR	NR	0			
MINES	0.750		0	0	0	0	NR	0			
NPDES	0.500		0	0	0	NR	NR	0			
UIC	0.500		0	0	0	NR	NR	0			
EDR HIGH RISK HISTORICAL RECORDS EDR Exclusive Records											
EDD MOD	4.500		•	0	•	•	•				
EDR MGP EDR Hist Auto	1.500		0	0	0	0	0	0			
EDR Hist Cleaner	0.625 0.625		0 0	0 0	0 0	0 0	NR NR	0 0			
EDR HISt Cleaner	0.625		U	U	U	U	INIX	U			
EDR RECOVERED GOVERNMENT ARCHIVES											
Exclusive Recovered Govt. Archives											
RGA LF RGA LUST	0.500 0.500		0	0 0	0 0	NR NR	NR NR	0 0			
- Totals		0	1	0	0	0	2	3			

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

N/A = This State does not maintain a SHWS list. See the Federal CERCLIS list.

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RIO RANCHO WELL 9R ECHO 1027617750

N/A

West **UNICORN CIRCLE NW** < 1/8 RIO RANCHO, NM 87144

0.015 mi. 79 ft.

Relative: ECHO: Higher

Envid: 1027617750 Registry ID: 110071369521 Actual:

6055 ft.

DFR URL:

Name: RIO RANCHO WELL 9R Address: UNICORN CIRCLE NW RIO RANCHO, NM 87144 City, State, Zip:

A2 KAFB PBR NO.2, TARGET N-5 UXO 1024714010 N/A

NNW

RIO RANCHO, NM > 1

1.168 mi.

6165 ft. Site 1 of 2 in cluster A

Relative: UXO:

Higher **FUDS** DoD Component:

Installation Name: PBR-2 TARGET N-5 Actual:

KAFB PBR NO.2, TARGET N-5 5923 ft. Name:

Address: Not reported Address 2: Not reported City, State, Zip: RIO RANCHO, NM

Site ID: 010EW Site Type: Air to Land 35.336944 Latitude: Longitude: -106.770556

Α3 **PBR-2 TARGET N-5** FUDS 1024904413 NNW N/A

> 1 ALBUQUERQUE, NM 1.168 mi.

6165 ft. Site 2 of 2 in cluster A

FUDS: Relative:

Higher EPA Region: 06

Installation ID: NM69799F902800 Actual:

Congressional District Number: 5923 ft. Name: PBR-2 TARGET N-5

FUDS Number: K06NM0611 City: **ALBUQUERQUE** State: NM

County: **BERNALILLO** Object ID: 1080 **USACE** Division: spd **USACE** District: spl

Properties with projects Status:

PRIV: PRIVATE LIVESTOCK GRAZING Current Owner:

EMS Map Link:

Eligibility: Eligible Has Projects: yes

NPL Status: Not on the NPL

MAP FINDINGS Map ID

Direction Distance Elevation

Site Database(s) **EPA ID Number**

PBR-2 TARGET N-5 (Continued)

1024904413

EDR ID Number

Project Required:

In 1942 The Dod Acquired This Land From The State, For Use As A Feature Description:

Practice Bombing Range. In 1946 The Site Was Considered Surplus And Sold To A Private Party. This Property Is Known Or Suspected To Contain Military Munitions And Explosives Of Concern (E.G., Unexploded

Ordnance) And Therefore May Present An Explosive Hazard.

35.336944

Latitude: -106.768056 Longitude:

FUDS Detail as of Jan 2015:

Fiscal Year: 2013

Federal Facility ID: NM9799F9028 RAB: Not reported NPL Status: Not Listed

Description: This 640-acre site is located approximately 18 miles northwest of

Albuquerque, New Mexico. Construction on this site includes improvements in connection with training operations. Currently, the land is privately owned for livestock grazing; however, it is located close to an area that is undergoing intensive residential development.

History: In 1942 the DoD acquired this land from the State, for use as a practice bombing range. In 1946 the site was considered surplus and

sold to a private party. This property is known or suspected to contain military munitions and explosives of concern (e.g., unexploded

ordnance) and therefore may present an explosive hazard.

CTC: 2961.5 Not reported Current Program: Future Program: Not reported Institutional ID: 55624

MRA:

55624 Inst ID: FUDS Number: K06NM0611 Facility Name: PBR-2 TARGET N-5

PHASE: **ARC**: Υ **DIST**: SPL **MMRP**:

K06NM061101R01 **MRA ID**:

MRS:

55624 Inst ID: FUDS Number: K06NM0611

Facility Name: PBR-2 TARGET N-5

PHASE: Site ID: 01 **DIST**: SPL **MMRP**:

MRA ID: K06NM061101R01 **PROJ NO**: K06NM061101

Count: 8 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
ALBUQUERQUE	S109096200	UNM, CENTENNIAL ENGINEERING BLDG.	CEC BLDG., NEAR MARTIN LUTHER		SCS
ALBUQUERQUE	S126112643	KAFB HANGAR 1002	SW OF RANDOLPH DRIVE AND SAN M		SCS
ALBUQUERQUE	1007490818	PROSPERITY & BROADWAY OIL SPILL	PROSPERITY & BROADWAY OIL SPIL		SEMS
ALBUQUERQUE	S122978890	KAFB BFF WELL DEVELOPMENT WATER KA	RIDGECREST DRIVE SE JUST EAST		SCS
ALBUQUERQUE	S109096213	VISTA DEL NORTE	TRACK T-4, VISTA DEL NORTE, AT		SCS
RIO RANCHO	1027130670	WELL NO. 9 IMPROVEMENTS AND 3 MG R	NW CORNER OF PHOENIX RD AND UN	87144	FINDS, ECHO
RIO RANCHO	1027621081	WELL 9 REHABILITATION - WA 2164	NW CORNER OF PHOENIX RD AND UN	87144	ECHO
RIO RANCHO	1027130354	3 MG RESERVOIR AND WELL 9 SITE IMP	VIC INTERSECTION UNICORN CIRCL	87144	FINDS, ECHO

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 12/19/2024 Source: EPA
Date Data Arrived at EDR: 01/02/2025 Telephone: N/A

Date Made Active in Reports: 01/21/2025 Last EDR Contact: 03/03/2025

Number of Days to Update: 19 Next Scheduled EDR Contact: 04/07/2025
Data Release Frequency: Quarterly

NPL Site Boundaries

Sources

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 7

Telephone 215-814-5418 Telephone: 913-551-7247

EPA Region 4 EPA Region 8

Telephone 404-562-8033 Telephone: 303-312-6774

EPA Region 5 EPA Region 9

Telephone 312-886-6686 Telephone: 415-947-4246

EPA Region 10

Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 12/19/2024 Source: EPA
Date Data Arrived at EDR: 01/02/2025 Telephone: N/A

Date Made Active in Reports: 01/21/2025 Last EDR Contact: 03/03/2025

Number of Days to Update: 19 Next Scheduled EDR Contact:

Next Scheduled EDR Contact: 04/07/2025 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Lists of Federal Delisted NPL sites

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Source: EPA

Date of Government Version: 12/19/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/21/2025

Number of Days to Update: 19

Telephone: N/A

Last EDR Contact: 03/03/2025

Next Scheduled EDR Contact: 04/07/2025 Data Release Frequency: Quarterly

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 11/20/2024 Date Data Arrived at EDR: 12/18/2024 Date Made Active in Reports: 12/20/2024

Number of Days to Update: 2

Source: Environmental Protection Agency

Telephone: 703-603-8704 Last EDR Contact: 12/18/2024

Next Scheduled EDR Contact: 04/07/2025 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 12/19/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/21/2025

Number of Days to Update: 19

Source: EPA Telephone: 800-424-9346

Last EDR Contact: 03/03/2025 Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Quarterly

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 12/19/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/21/2025

Number of Days to Update: 19

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 03/03/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Quarterly

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

Lists of Federal RCRA TSD facilities

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: Environmental Protection Agency

Telephone: 214-665-6444 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

Lists of Federal RCRA generators

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: Environmental Protection Agency Telephone: 214-665-6444

Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: Environmental Protection Agency

Telephone: 214-665-6444 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

RCRA-VSQG: RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators)
RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation
and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database
includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste
as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate
less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: Environmental Protection Agency

Telephone: 214-665-6444 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 11/11/2024 Date Data Arrived at EDR: 11/25/2024 Date Made Active in Reports: 02/18/2025

Number of Days to Update: 85

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 03/04/2025

Next Scheduled EDR Contact: 05/19/2025 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 11/04/2024 Date Data Arrived at EDR: 11/15/2024 Date Made Active in Reports: 02/11/2025

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/18/2025

Next Scheduled EDR Contact: 12/02/2024 Data Release Frequency: Varies

US INST CONTROLS: Institutional Controls Sites List

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 11/04/2024 Date Data Arrived at EDR: 11/15/2024 Date Made Active in Reports: 02/11/2025

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/18/2025

Next Scheduled EDR Contact: 06/02/2025

Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 12/03/2024 Date Data Arrived at EDR: 12/11/2024 Date Made Active in Reports: 02/18/2025

Number of Days to Update: 69

Source: National Response Center, United States Coast Guard

Telephone: 202-267-2180 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

Lists of state- and tribal hazardous waste facilities

SCS: State Cleanup Sites Listing

State cleanup sites that fall under the state's Water Quality Control Commission Regulations.

Date of Government Version: 01/12/2023 Date Data Arrived at EDR: 01/13/2023 Date Made Active in Reports: 03/30/2023

Number of Days to Update: 76

Source: Environment Department Telephone: 505-827-2855 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/21/2025

Data Release Frequency: Varies

SHWS: This state does not maintain a SHWS list. See the Federal CERCLIS list and Federal NPL list. State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: Department of the Environment

Telephone: 505-827-2918 Last EDR Contact: 03/13/2025

Next Scheduled EDR Contact: 06/30/2025

Data Release Frequency: N/A

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF: Solid Waste Facilities

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 09/27/2022 Date Data Arrived at EDR: 10/31/2022 Date Made Active in Reports: 02/02/2023

Number of Days to Update: 94

Source: New Mexico Environment Department

Telephone: 505-827-0347 Last EDR Contact: 01/30/2025

Next Scheduled EDR Contact: 05/12/2025 Data Release Frequency: Annually

Lists of state and tribal leaking storage tanks

LUST: Leaking Underground Storage Tank Priorization Database

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 08/01/2006 Date Data Arrived at EDR: 10/06/2006 Date Made Active in Reports: 11/08/2006

Number of Days to Update: 33

Source: New Mexico Environment Department

Telephone: 505-476-4397 Last EDR Contact: 03/13/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: No Update Planned

LAST: Leaking Aboveground Storage Tank Sites
A listing of leaking aboveground storage tank sites.

Date of Government Version: 05/01/2006 Date Data Arrived at EDR: 05/01/2006 Date Made Active in Reports: 06/05/2006

Number of Days to Update: 35

Source: Environment Department Telephone: 505-476-4397 Last EDR Contact: 03/13/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: No Update Planned

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land

Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 04/11/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025

Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025

Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: Environmental Protection Agency

Telephone: 415-972-3372 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025

Data Release Frequency: Varies

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land
A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 05/07/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

LTANKS: Leaking Storage Tank Listing

A listing of leaking storage tank site locations.

Date of Government Version: 06/27/2024 Date Data Arrived at EDR: 07/02/2024 Date Made Active in Reports: 09/26/2024

Number of Days to Update: 86

Source: Environment Department Telephone: 505-476-4390 Last EDR Contact: 12/23/2024

Next Scheduled EDR Contact: 04/07/2025 Data Release Frequency: Annually

Lists of state and tribal registered storage tanks

FEMA UST: Underground Storage Tank Listing

A listing of all FEMA owned underground storage tanks.

Date of Government Version: 08/12/2024 Date Data Arrived at EDR: 10/30/2024 Date Made Active in Reports: 01/14/2025

Number of Days to Update: 76

Source: FEMA

Telephone: 202-646-5797 Last EDR Contact: 12/23/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

UST: Listing of Underground Storage Tanks

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 08/01/2006 Date Data Arrived at EDR: 09/27/2006 Date Made Active in Reports: 10/23/2006

Number of Days to Update: 26

Source: New Mexico Environment Department

Telephone: 505-476-4397 Last EDR Contact: 02/12/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: No Update Planned

AST: Aboveground Storage Tanks List

Aboveground tanks that have been inspected by the State Fire Marshal.

Date of Government Version: 08/01/2006 Date Data Arrived at EDR: 09/27/2006 Date Made Active in Reports: 10/20/2006

Number of Days to Update: 23

Source: Environment Department Telephone: 505-476-4397 Last EDR Contact: 02/12/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: No Update Planned

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/11/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025

Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025

Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025

Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 05/14/2024 Date Data Arrived at EDR: 05/30/2024 Date Made Active in Reports: 08/28/2024

Number of Days to Update: 90

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 07/29/2024 Data Release Frequency: Varies

TANKS: Storage Tank Facility Listing

A listing of aboveground and underground storage tank site locations.

Date of Government Version: 02/20/2025 Date Data Arrived at EDR: 02/21/2025 Date Made Active in Reports: 02/25/2025

Number of Days to Update: 4

Source: Environment Department Telephone: 505-476-4390 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Semi-Annually

State and tribal institutional control / engineering control registries

INST CONTROL: Sites with Institutional Controls

Sites included in the Voluntary Cleanup listing that have Institutional Controls in place.

Date of Government Version: 06/30/2024 Date Data Arrived at EDR: 10/08/2024 Date Made Active in Reports: 12/23/2024

Number of Days to Update: 76

Source: Environment Department Telephone: 505-827-2754 Last EDR Contact: 01/07/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Semi-Annually

Lists of state and tribal voluntary cleanup sites

VCP: Voluntary Remediation Program Sites

Sites involved in the Voluntary Remediation Program.

Date of Government Version: 06/30/2024 Date Data Arrived at EDR: 10/08/2024 Date Made Active in Reports: 12/23/2024

Number of Days to Update: 76

Source: Environment Department Telephone: 505-827-2754 Last EDR Contact: 01/07/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Semi-Annually

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008

Number of Days to Update: 27

Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 07/08/2021

Next Scheduled EDR Contact: 07/20/2009 Data Release Frequency: Varies

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016

Number of Days to Update: 142

Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 03/12/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Varies

Lists of state and tribal brownfield sites

BROWNFIELDS: Brownfields Site Listing
A listing of targeted brownfields assessment.

Date of Government Version: 06/30/2024 Date Data Arrived at EDR: 07/30/2024 Date Made Active in Reports: 10/21/2024

Number of Days to Update: 83

Source: New Mexico Environment Telephone: 505-827-0171 Last EDR Contact: 01/28/2025

Next Scheduled EDR Contact: 05/12/2025

Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 09/09/2024 Date Data Arrived at EDR: 09/11/2024 Date Made Active in Reports: 12/06/2024

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 03/12/2025

Next Scheduled EDR Contact: 06/23/2025 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY: Recycling Facility Listing
A listing of recycling facility locations.

Date of Government Version: 09/21/2022 Date Data Arrived at EDR: 10/31/2022 Date Made Active in Reports: 01/19/2023

Number of Days to Update: 80

Source: Environment Department Telephone: 505-827-0197 Last EDR Contact: 01/30/2025

Next Scheduled EDR Contact: 05/12/2025 Data Release Frequency: Annually

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands

Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 703-308-8245 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 05/05/2025 Data Release Frequency: Varies

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009

Number of Days to Update: 137

Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 01/23/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: No Update Planned

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 02/07/2024 Date Data Arrived at EDR: 11/13/2024 Date Made Active in Reports: 11/19/2024

Number of Days to Update: 6

Source: Department of Health & Human Serivces, Indian Health Service

Telephone: 301-443-1452 Last EDR Contact: 12/09/2024

Next Scheduled EDR Contact: 05/05/2025 Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 05/20/2024 Date Data Arrived at EDR: 08/19/2024 Date Made Active in Reports: 10/09/2024

Number of Days to Update: 51

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: No Update Planned

CDL: Clandestine Drug Laboratory Listing

A listing of clandestine drug labs, such as illegal methamphetamine labs.

Date of Government Version: 05/17/2018 Date Data Arrived at EDR: 07/18/2018 Date Made Active in Reports: 08/14/2018

Number of Days to Update: 27

Source: Environment Department Telephone: 505-476-6000 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Varies

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 05/20/2024 Date Data Arrived at EDR: 08/19/2024 Date Made Active in Reports: 10/09/2024

Number of Days to Update: 51

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Quarterly

Local Land Records

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 12/19/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/21/2025

Number of Days to Update: 19

Source: Environmental Protection Agency

Telephone: 202-564-6023 Last EDR Contact: 03/03/2025

Next Scheduled EDR Contact: 04/07/2025 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/10/2024 Date Data Arrived at EDR: 12/11/2024 Date Made Active in Reports: 02/27/2025

Number of Days to Update: 78

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

SPILLS: Spill Data

Hazardous materials spills data.

Date of Government Version: 06/20/2024 Date Data Arrived at EDR: 06/20/2024 Date Made Active in Reports: 09/12/2024

Number of Days to Update: 84

Source: Environment Department Telephone: 505-827-0166 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Semi-Annually

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: Environmental Protection Agency

Telephone: 214-665-6444 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 10/01/2024 Date Data Arrived at EDR: 11/12/2024 Date Made Active in Reports: 01/21/2025

Number of Days to Update: 70

Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285 Last EDR Contact: 02/11/2025

Next Scheduled EDR Contact: 05/26/2025 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 06/07/2021 Date Data Arrived at EDR: 07/13/2021 Date Made Active in Reports: 03/09/2022

Number of Days to Update: 239

Source: USGS

Telephone: 888-275-8747 Last EDR Contact: 01/07/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Varies

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 04/02/2018
Date Data Arrived at EDR: 04/11/2018
Date Made Active in Reports: 11/06/2019

Number of Days to Update: 574

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 12/30/2024 Next Scheduled EDR Contact: 04/14/2025

Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 07/30/2021 Date Data Arrived at EDR: 02/03/2023 Date Made Active in Reports: 02/10/2023

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 615-532-8599 Last EDR Contact: 02/03/2025

Next Scheduled EDR Contact: 05/19/2025 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/06/2025

Number of Days to Update: 15

Source: Environmental Protection Agency Telephone: 202-566-1917 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA Watch List

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013
Date Data Arrived at EDR: 03/21/2014
Date Made Active in Reports: 06/17/2014

Number of Days to Update: 88

Source: Environmental Protection Agency Telephone: 617-520-3000

Last EDR Contact: 01/27/2025

Next Scheduled EDR Contact: 05/12/2025 Data Release Frequency: No Update Planned

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 73

Source: Environmental Protection Agency

Telephone: 703-308-4044 Last EDR Contact: 01/30/2025

Next Scheduled EDR Contact: 05/12/2025 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 06/14/2022 Date Made Active in Reports: 03/24/2023

Number of Days to Update: 283

Source: EPA

Telephone: 202-260-5521 Last EDR Contact: 03/10/2025

Next Scheduled EDR Contact: 06/23/2025 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2023 Date Data Arrived at EDR: 02/11/2025 Date Made Active in Reports: 02/18/2025

Number of Days to Update: 7

Source: EPA

Telephone: 202-566-0250 Last EDR Contact: 02/11/2025

Next Scheduled EDR Contact: 05/26/2025 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 10/15/2024 Date Data Arrived at EDR: 10/16/2024 Date Made Active in Reports: 01/14/2025

Number of Days to Update: 90

Source: EPA

Telephone: 202-564-4203 Last EDR Contact: 01/15/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 01/29/2025 Date Data Arrived at EDR: 02/03/2025 Date Made Active in Reports: 02/27/2025

Number of Days to Update: 24

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 03/03/2025

Next Scheduled EDR Contact: 06/09/2025 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 10/01/2024 Date Data Arrived at EDR: 10/23/2024 Date Made Active in Reports: 01/14/2025

Number of Days to Update: 83

Source: Environmental Protection Agency

Telephone: 202-564-8600 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995

Number of Days to Update: 35

Source: EPA

Telephone: 202-564-4104 Last EDR Contact: 06/02/2008

Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023

Number of Days to Update: 16

Source: EPA

Telephone: 202-564-6023 Last EDR Contact: 03/03/2025

Next Scheduled EDR Contact: 05/12/2025 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 07/01/2024 Date Data Arrived at EDR: 10/02/2024 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 100

Source: EPA

Telephone: 202-566-0500 Last EDR Contact: 01/02/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/23/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: No Update Planned

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: No Update Planned

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 10/12/2024 Date Data Arrived at EDR: 10/17/2024 Date Made Active in Reports: 11/19/2024

Number of Days to Update: 33

Source: Nuclear Regulatory Commission

Telephone: 301-415-0717 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2023 Date Data Arrived at EDR: 10/16/2024 Date Made Active in Reports: 01/14/2025

Number of Days to Update: 90

Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 02/24/2025

Next Scheduled EDR Contact: 06/09/2025 Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 01/12/2017 Date Data Arrived at EDR: 03/05/2019 Date Made Active in Reports: 11/11/2019

Number of Days to Update: 251

Source: Environmental Protection Agency

Telephone: N/A

Last EDR Contact: 02/24/2025

Next Scheduled EDR Contact: 06/09/2025 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 09/13/2019 Date Data Arrived at EDR: 11/06/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 96

Source: Environmental Protection Agency Telephone: 202-566-0517

Last EDR Contact: 01/30/2025

Next Scheduled EDR Contact: 05/12/2025 Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/01/2019 Date Made Active in Reports: 09/23/2019

Number of Days to Update: 84

Source: Environmental Protection Agency

Telephone: 202-343-9775 Last EDR Contact: 12/17/2024

Next Scheduled EDR Contact: 04/07/2025 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2007

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2008

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 10/04/2024 Date Data Arrived at EDR: 10/16/2024 Date Made Active in Reports: 12/06/2024

Number of Days to Update: 51

Source: Department of Transporation, Office of Pipeline Safety

Telephone: 202-366-4595 Last EDR Contact: 01/22/2025

Next Scheduled EDR Contact: 05/05/2025 Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 09/30/2024 Date Data Arrived at EDR: 10/09/2024 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 93

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 12/30/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2023 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/07/2025

Number of Days to Update: 16

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017

Number of Days to Update: 546

Source: USGS

Telephone: 202-208-3710 Last EDR Contact: 12/30/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 03/03/2023 Date Data Arrived at EDR: 03/03/2023 Date Made Active in Reports: 06/09/2023

Number of Days to Update: 98

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 01/23/2025

Next Scheduled EDR Contact: 05/12/2025

Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 02/12/2025 Date Data Arrived at EDR: 02/12/2025 Date Made Active in Reports: 02/27/2025

Number of Days to Update: 15

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 02/06/2025

Next Scheduled EDR Contact: 05/26/2025

Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 12/19/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/21/2025

Number of Days to Update: 19

Source: Environmental Protection Agency

Telephone: 703-603-8787 Last EDR Contact: 03/03/2025

Next Scheduled EDR Contact: 04/07/2025

Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010

Number of Days to Update: 36

Source: American Journal of Public Health

Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

Date of Government Version: 10/12/2016
Date Data Arrived at EDR: 10/26/2016
Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

MINES VIOLATIONS: MSHA Violation Assessment Data

Mines violation and assessment information. Department of Labor, Mine Safety & Health Administration.

Date of Government Version: 10/01/2024 Date Data Arrived at EDR: 10/02/2024 Date Made Active in Reports: 10/09/2024

Number of Days to Update: 7

Source: DOL, Mine Safety & Health Admi

Telephone: 202-693-9424 Last EDR Contact: 02/19/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Quarterly

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 11/01/2024 Date Data Arrived at EDR: 11/18/2024 Date Made Active in Reports: 02/11/2025

Number of Days to Update: 85

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 02/18/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 05/02/2024 Date Data Arrived at EDR: 08/20/2024 Date Made Active in Reports: 10/09/2024

Number of Days to Update: 50

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011

Number of Days to Update: 97

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025

Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 12/10/2024 Date Data Arrived at EDR: 12/11/2024 Date Made Active in Reports: 02/18/2025

Number of Days to Update: 69

MINES MRDS: Mineral Resources Data System

Mineral Resources Data System

Date of Government Version: 06/04/2024 Date Data Arrived at EDR: 11/22/2024 Date Made Active in Reports: 02/18/2025

Number of Days to Update: 88

Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 03/12/2025 Next Scheduled EDR Contact: 06/16/2025

Data Release Frequency: Quarterly

Source: USGS

Telephone: 703-648-6533 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Varies

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 11/11/2024 Date Data Arrived at EDR: 11/20/2024 Date Made Active in Reports: 02/18/2025

Number of Days to Update: 90

Source: EPA

Telephone: (214) 665-2200 Last EDR Contact: 02/25/2025

Next Scheduled EDR Contact: 06/09/2025 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/06/2021 Date Data Arrived at EDR: 05/21/2021 Date Made Active in Reports: 08/11/2021

Number of Days to Update: 82

Source: Environmental Protection Agency

Telephone: 202-564-0527 Last EDR Contact: 02/12/2025

Next Scheduled EDR Contact: 06/02/2025 Data Release Frequency: Varies

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 09/06/2023 Date Data Arrived at EDR: 09/13/2023 Date Made Active in Reports: 12/11/2023

Number of Days to Update: 89

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 01/06/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Varies

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 12/21/2024 Date Data Arrived at EDR: 12/27/2024 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 14

Source: Environmental Protection Agency

Telephone: 202-564-2280 Last EDR Contact: 12/27/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Quarterly

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels

Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 11/08/2024 Date Data Arrived at EDR: 11/08/2024 Date Made Active in Reports: 01/14/2025

Number of Days to Update: 67

Source: EPA

Telephone: 800-385-6164 Last EDR Contact: 02/13/2025

Next Scheduled EDR Contact: 05/26/2025 Data Release Frequency: Quarterly

PFAS NPL: Superfund Sites with PFAS Detections Information

EPA's Office of Land and Emergency Management and EPA Regional Offices maintain data describing what is known about site investigations, contamination, and remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) where PFAS is present in the environment.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 703-603-8895 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS FEDERAL SITES: Federal Sites PFAS Information

Several federal entities, such as the federal Superfund program, Department of Defense, National Aeronautics and Space Administration, Department of Transportation, and Department of Energy provided information for sites with known or suspected detections at federal facilities.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS TRIS: List of PFAS Added to the TRI

Section 7321 of the National Defense Authorization Act for Fiscal Year 2020 (NDAA) immediately added certain per- and polyfluoroalkyl substances (PFAS) to the list of chemicals covered by the Toxics Release Inventory (TRI) under Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) and provided a framework for additional PFAS to be added to TRI on an annual basis.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-566-0250 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS TSCA: PFAS Manufacture and Imports Information

EPA issued the Chemical Data Reporting (CDR) Rule under the Toxic Substances Control Act (TSCA) and requires chemical manufacturers and facilities that manufacture or import chemical substances to report data to EPA. EPA publishes non-confidential business information (non-CBI) and includes descriptive information about each site, corporate parent, production volume, other manufacturing information, and processing and use information.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS RCRA MANIFEST: PFAS Transfers Identified In the RCRA Database Listing

To work around the lack of PFAS waste codes in the RCRA database, EPA developed the PFAS Transfers dataset by mining e-Manifest records containing at least one of these common PFAS keywords: PFAS, PFOA, PFOS, PERFL, AFFF, GENX, GEN-X (plus the VT waste codes). These keywords were searched for in the following text fields: Manifest handling instructions (MANIFEST_HANDLING_INSTR), Non-hazardous waste description (NON_HAZ_WASTE_DESCRIPTION), DOT printed information (DOT_PRINTED_INFORMATION), Waste line handling instructions (WASTE_LINE_HANDLING_INSTR), Waste residue comments (WASTE_RESIDUE_COMMENTS).

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS ATSDR: PFAS Contamination Site Location Listing

PFAS contamination site locations from the Department of Health & Human Services, Center for Disease Control & Prevention. ATSDR is involved at a number of PFAS-related sites, either directly or through assisting state and federal partners. As of now, most sites are related to drinking water contamination connected with PFAS production facilities or fire training areas where aqueous film-forming firefighting foam (AFFF) was regularly used.

Date of Government Version: 06/24/2020 Date Data Arrived at EDR: 03/17/2021 Date Made Active in Reports: 11/08/2022

Number of Days to Update: 601

Source: Department of Health & Human Services

Telephone: 202-741-5770 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 05/05/2025

Data Release Frequency: Varies

PFAS WQP: Ambient Environmental Sampling for PFAS

The Water Quality Portal (WQP) is a part of a modernized repository storing ambient sampling data for all environmental media and tissue samples. A wide range of federal, state, tribal and local governments, academic and non-governmental organizations and individuals submit project details and sampling results to this public repository. The information is commonly used for research and assessments of environmental quality.

Date of Government Version: 12/13/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS PROJECT: NORTHEASTERN UNIVERSITY PFAS PROJECT

The PFAS Contamination Site Tracker records qualitative and quantitative data from each site in a chart, specifically examining discovery, contamination levels, government response, litigation, health impacts, media coverage, and community characteristics. All data presented in the chart were extracted from government websites, such as state health departments or the Environmental Protection Agency, and news articles.

Date of Government Version: 05/19/2023 Date Data Arrived at EDR: 04/05/2024 Date Made Active in Reports: 06/06/2024

Number of Days to Update: 62

Source: Social Science Environmental Health Research Institute

Telephone: N/A

Last EDR Contact: 03/06/2025

Next Scheduled EDR Contact: 06/16/2025 Data Release Frequency: Varies

PFAS NPDES: Clean Water Act Discharge Monitoring Information

Any discharger of pollutants to waters of the United States from a point source must have a National Pollutant Discharge Elimination System (NPDES) permit. The process for obtaining limits involves the regulated entity (permittee) disclosing releases in a NPDES permit application and the permitting authority (typically the state but sometimes EPA) deciding whether to require monitoring or monitoring with limits. Caveats and Limitations: Less than half of states have required PFAS monitoring for at least one of their permittees and fewer states have established PFAS effluent limits for permittees. New rulemakings have been initiated that may increase the number of facilities monitoring for PFAS in the future.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/14/2025

Number of Days to Update: 12

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 01/02/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS ECHO: Facilities in Industries that May Be Handling PFAS Listing

Regulators and the public have expressed interest in knowing which regulated entities may be using PFAS. EPA has developed a dataset from various sources that show which industries may be handling PFAS. Approximately 120,000 facilities subject to federal environmental programs have operated or currently operate in industry sectors with processes that may involve handling and/or release of PFAS.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS ECHO FIRE TRAIN: Facilities in Industries that May Be Handling PFAS Listing

A list of fire training sites was added to the Industry Sectors dataset using a keyword search on the permitted facilitys name to identify sites where fire-fighting foam may have been used in training exercises. Additionally, you may view an example spreadsheet of the subset of fire training facility data, as well as the keywords used in selecting or deselecting a facility for the subset. as well as the keywords used in selecting or deselecting a facility for the subset. These keywords were tested to maximize accuracy in selecting facilities that may use fire-fighting foam in training exercises, however, due to the lack of a required reporting field in the data systems for designating fire training sites, this methodology may not identify all fire training sites or may potentially misidentify them.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PFAS PT 139 AIRPORT: All Certified Part 139 Airports PFAS Information Listing

Since July 1, 2006, all certified part 139 airports are required to have fire-fighting foam onsite that meet military specifications (MIL-F-24385) (14 CFR 139.317). To date, these military specification fire-fighting foams are fluorinated and have been historically used for training and extinguishing. The 2018 FAA Reauthorization Act has a provision stating that no later than October 2021, FAA shall not require the use of fluorinated AFFF. This provision does not prohibit the use of fluorinated AFFF at Part 139 civilian airports; it only prohibits FAA from mandating its use. The Federal Aviation Administration?s document AC 150/5210-6D - Aircraft Fire Extinguishing Agents provides guidance on Aircraft Fire Extinguishing Agents, which includes Aqueous Film Forming Foam (AFFF).

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-272-0167 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

AQUEOUS FOAM NRC: Aqueous Foam Related Incidents Listing

The National Response Center (NRC) serves as an emergency call center that fields initial reports for pollution and railroad incidents and forwards that information to appropriate federal/state agencies for response. The spreadsheets posted to the NRC website contain initial incident data that has not been validated or investigated by a federal/state response agency. Response center calls from 1990 to the most recent complete calendar year where there was indication of Aqueous Film Forming Foam (AFFF) usage are included in this dataset. NRC calls may reference AFFF usage in the ?Material Involved? or ?Incident Description? fields.

Date of Government Version: 12/30/2024 Date Data Arrived at EDR: 01/02/2025 Date Made Active in Reports: 01/10/2025

Number of Days to Update: 8

Source: Environmental Protection Agency

Telephone: 202-267-2675 Last EDR Contact: 02/20/2025

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PCS ENF: Enforcement data

No description is available for this data

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 02/05/2015 Date Made Active in Reports: 03/06/2015

Number of Days to Update: 29

Source: EPA

Telephone: 202-564-2497 Last EDR Contact: 12/23/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: Varies

PCS: Permit Compliance System

PCS is a computerized management information system that contains data on National Pollutant Discharge Elimination System (NPDES) permit holding facilities. PCS tracks the permit, compliance, and enforcement status of NPDES facilities.

Date of Government Version: 12/16/2016 Date Data Arrived at EDR: 01/06/2017 Date Made Active in Reports: 03/10/2017

Number of Days to Update: 63

Source: EPA, Office of Water Telephone: 202-564-2496 Last EDR Contact: 12/23/2024

Next Scheduled EDR Contact: 04/14/2025 Data Release Frequency: No Update Planned

BIOSOLIDS: ICIS-NPDES Biosolids Facility Data

The data reflects compliance information about facilities in the biosolids program.

Date of Government Version: 10/13/2024 Date Data Arrived at EDR: 10/16/2024 Date Made Active in Reports: 10/23/2024

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 202-564-4700 Last EDR Contact: 01/14/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Varies

UST FINDER RELEASE: UST Finder Releases Database

US EPA's UST Finder data is a national composite of leaking underground storage tanks. This data contains information about, and locations of, leaking underground storage tanks. Data was collected from state sources and standardized into a national profile by EPA's Office of Underground Storage Tanks, Office of Research and Development, and the Association of State and Territorial Solid Waste Management Officials.

Date of Government Version: 06/08/2023 Date Data Arrived at EDR: 10/31/2023 Date Made Active in Reports: 01/18/2024

Number of Days to Update: 79

Source: Environmental Protecton Agency

Telephone: 202-564-0394 Last EDR Contact: 02/06/2025

Next Scheduled EDR Contact: 05/19/2025 Data Release Frequency: Semi-Annually

UST FINDER: UST Finder Database

EPA developed UST Finder, a web map application containing a comprehensive, state-sourced national map of underground storage tank (UST) and leaking UST (LUST) data. It provides the attributes and locations of active and closed USTs, UST facilities, and LUST sites from states and from Tribal lands and US territories. UST Finder contains information about proximity of UST facilities and LUST sites to: surface and groundwater public drinking water protection areas; estimated number of private domestic wells and number of people living nearby; and flooding and wildfires.

Date of Government Version: 06/08/2023 Date Data Arrived at EDR: 10/04/2023 Date Made Active in Reports: 01/18/2024

Number of Days to Update: 106

Source: Environmental Protection Agency

Telephone: 202-564-0394 Last EDR Contact: 02/06/2025

Next Scheduled EDR Contact: 05/19/2025 Data Release Frequency: Varies

E MANIFEST: Hazardous Waste Electronic Manifest System

EPA established a national system for tracking hazardous waste shipments electronically. This system, known as ?e-Manifest,? will modernize the nation?s cradle-to-grave hazardous waste tracking process while saving valuable time, resources, and dollars for industry and states.

Date of Government Version: 02/17/2025 Date Data Arrived at EDR: 02/19/2025 Date Made Active in Reports: 03/14/2025

Number of Days to Update: 23

Source: Environmental Protection Agency

Telephone: 833-501-6826 Last EDR Contact: 03/18/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: Varies

PFAS: Per- and Polyfluoroalkyl Substances (PFAS) Data

Site locations where Per- and Polyfluoroalkyl Substances (PFAS) contamination has been detected.

Date of Government Version: 12/31/2023 Date Data Arrived at EDR: 07/11/2024 Date Made Active in Reports: 07/11/2024

Number of Days to Update: 0

Source: New Mexico Environment Department

Telephone: 505-827-2919 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Varies

AIRS: Airs Information

A listing of facilities with Air Quality Bureau permits.

Date of Government Version: 10/16/2024 Date Data Arrived at EDR: 10/17/2024 Date Made Active in Reports: 01/07/2025

Number of Days to Update: 82

Source: New Mexico Environment Department

Telephone: 505-476-4339 Last EDR Contact: 01/23/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Annually

ASBESTOS: List of Asbestos Demolition and Renovations Jobs

Asbestos is a common fibrous rock found worldwide which has been used in various products for over 4500 years. It has been used in over 3000 different products such as textiles, paper, ropes, wicks, stoves, filters, floor tiles, roofing shingles, clutch facings, water pipe, cements, fillers, felt, fireproof clothing, gaskets, battery boxes, clapboard, wallboard, fire doors, fire curtains, insulation, brake linings, etc.

Date of Government Version: 10/16/2024 Date Data Arrived at EDR: 10/22/2024 Date Made Active in Reports: 01/09/2025

Number of Days to Update: 79

Source: New Mexico Environment Department

Telephone: 505-827-1494 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/28/2025 Data Release Frequency: Semi-Annually

DRYCLEANERS: Drycleaner Facility Listing

A listing of drycleaner facility locations. The listing may contain facilities that are no longer there, or under different management.

Date of Government Version: 01/06/2010 Date Data Arrived at EDR: 01/07/2010 Date Made Active in Reports: 02/04/2010

Number of Days to Update: 28

Source: Environment Department Telephone: 505-222-9507 Last EDR Contact: 03/13/2025

Next Scheduled EDR Contact: 06/30/2025 Data Release Frequency: No Update Planned

FIN ASSURANCE 1: Financial Assurance Information

Information for underground solid waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 12/03/2012 Date Data Arrived at EDR: 01/04/2013 Date Made Active in Reports: 01/10/2013

Number of Days to Update: 6

Source: Environment Department Telephone: 505-827-0197 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 05/05/2025 Data Release Frequency: Varies

FIN ASSURANCE 2: Financial Assurance Information

Information for underground hazardous waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 10/30/2024 Date Data Arrived at EDR: 11/06/2024 Date Made Active in Reports: 01/30/2025

Number of Days to Update: 85

Source: Environment Department Telephone: 505-476-6018 Last EDR Contact: 01/16/2025

Next Scheduled EDR Contact: 05/05/2025 Data Release Frequency: Annually

COAL MINES 2: Coal Permit Boundaries

ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining & Minerals Division (MMD), or by the federal DOI Office of Surface Mining. Reclamation & Enforcement.

Date of Government Version: 12/06/2024 Date Data Arrived at EDR: 12/06/2024 Date Made Active in Reports: 02/25/2025

Number of Days to Update: 81

Source: Mining & Minerals Division Telephone: 505-476-3417 Last EDR Contact: 03/11/2025

Next Scheduled EDR Contact: 06/23/2025 Data Release Frequency: Varies

COAL MINES: Coal Mine Permits Database

New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining & Minerals Division (MMD), or by the federal DOI Office of Surface Mining, Reclamation & Enforcement.

Date of Government Version: 12/06/2024 Date Data Arrived at EDR: 12/06/2024 Date Made Active in Reports: 02/25/2025

Number of Days to Update: 81

Source: Bureau of Geology and Mineral Resources

Telephone: 505-476-3402 Last EDR Contact: 03/11/2025

Next Scheduled EDR Contact: 06/23/2025 Data Release Frequency: Varies

NPDES: List of Discharge Permits

General information regarding NPDES (National Pollutant Discharge Elimination System) permits.

Date of Government Version: 08/31/2023 Date Data Arrived at EDR: 10/11/2023 Date Made Active in Reports: 01/03/2024

Number of Days to Update: 84

Source: Environment Department Telephone: 505-827-2918 Last EDR Contact: 01/09/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Semi-Annually

UIC: Underground Injection Control Listing

The listing includes Discharge Permits (DP) with Underground Injection Control Wells, located in New Mexico.

Date of Government Version: 09/25/2024 Date Data Arrived at EDR: 10/08/2024 Date Made Active in Reports: 12/23/2024

Number of Days to Update: 76

Source: New Mexico Environment Department

Telephone: 505-827-2936 Last EDR Contact: 01/07/2025

Next Scheduled EDR Contact: 04/21/2025 Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc.
Telephone: N/A
Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A
Last EDR Contact: N/A
No. 10 Contact: N/A

Number of Days to Update: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the New Mexico Environment Department in New Mexico.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 01/16/2014
Number of Days to Update: 199

Source: New Mexico Environment Department

Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists.

Compiled from Records formerly available from the New Mexico Environment Department in New Mexico.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 01/03/2014
Number of Days to Update: 186

Source: New Mexico Environment Department

Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 12/31/2019 Date Data Arrived at EDR: 11/30/2023 Date Made Active in Reports: 12/01/2023

Number of Days to Update: 1

Source: Department of Environmental Conservation

Telephone: 518-402-8651 Last EDR Contact: 01/23/2025

Next Scheduled EDR Contact: 05/05/2025 Data Release Frequency: Quarterly

WI MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 06/19/2019 Date Made Active in Reports: 09/03/2019

Number of Days to Update: 76

Source: Department of Natural Resources

Telephone: N/A

Last EDR Contact: 02/26/2025

Next Scheduled EDR Contact: 06/16/2025 Data Release Frequency: Annually

Oil/Gas Pipelines

Source: Endeavor Business Media

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Electric Power Transmission Line Data

Source: Endeavor Business Media

This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are

comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Licensed Child Day Care Providers

Source: Office of Child Development

Telephone: 505-827-7946

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: US Fish & Wildlife Service Telephone: 505-248-6660

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

CORR WELL 9 KING BLVD RIO RANCHO, NM 87144

TARGET PROPERTY COORDINATES

Latitude (North): 35.32002 - 35° 19' 12.07" Longitude (West): 106.761838 - 106° 45' 42.62"

Universal Tranverse Mercator: Zone 13 UTM X (Meters): 339845.6 UTM Y (Meters): 3909758.2

Elevation: 5917 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 14565935 ARROYO DE LAS CALABACILLAS, NM

Version Date: 2020

East Map: 14565981 LOMA MACHETE, NM

Version Date: 2020

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

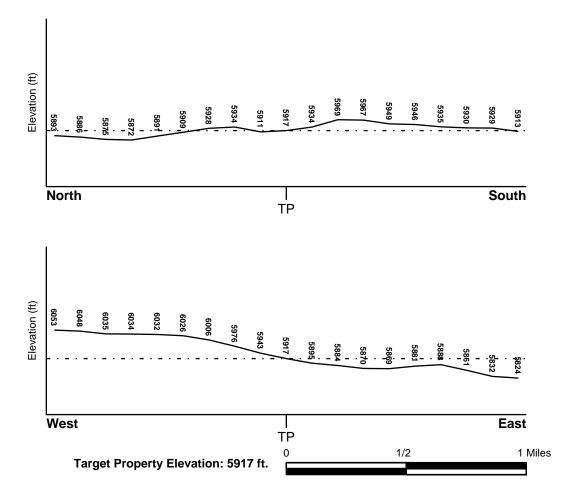
Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General ENE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

35043C1875D FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

35043C1900D FEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

NOT AVAILABLE YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius: 1.25 miles Status: Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION
MAP ID FROM TP GROUNDWATER FLOW
Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

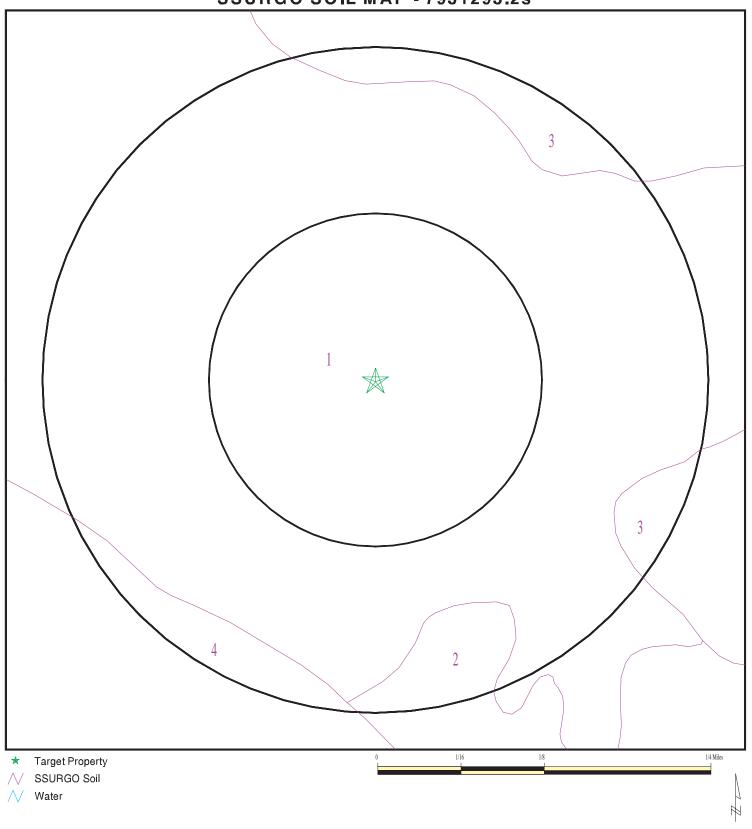
Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION


Era: Cenozoic Category: Continental Deposits

System: Tertiary Series: Pliocene

Code: Tpc (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 7931293.2s

SITE NAME: Corr Well 9 ADDRESS: King Blvd Rio Rancho NM 87144 LAT/LONG: 35.32002 / 106.761838

CLIENT: Rocky Mountain Ecology, LLC CONTACT: Clay Benton INQUIRY #: 7931293.2s

DATE: March 19, 2025 12:36 pm

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Zia

Soil Surface Texture: sandy loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Boundary			Classification		Saturated hydraulic	
Layer	Upper Lower		Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	5 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand. COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42.34 Min: 14.11	Max: 7.8 Min: 7.4
2	46 inches	59 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand. COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42.34 Min: 14.11	Max: 7.8 Min: 7.4
3	33 inches	46 inches	sandy clay loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand. COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42.34 Min: 14.11	Max: 7.8 Min: 7.4

	Soil Layer Information						
	Boundary Layer Upper Lower			Classification		Saturated hydraulic	
Layer			Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Con recaction
4	14 inches	33 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand. COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42.34 Min: 14.11	Max: 7.8 Min: 7.4
5	5 inches	14 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand. COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42.34 Min: 14.11	Max: 7.8 Min: 7.4

Soil Map ID: 2

Soil Component Name: Sheppard

Soil Surface Texture: loamy fine sand

Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels. Hydrologic Group:

Soil Drainage Class: Somewhat excessively drained

Hydric Status: Partially hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches Depth to Watertable Min: > 0 inches

			Soil Layer	Information			
	Воц	undary	Soil Texture Class	Classification		Saturated hydraulic	
Layer	Upper	Lower		AASHTO Group	Unified Soil	conductivity Soil R micro m/sec (pH)	Soil Reaction (pH)
1	0 inches	3 inches	loamy fine sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 141.14 Min: 42.34	Max: 8.4 Min: 7.9

Soil Layer Information							
	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	
2	44 inches	59 inches	loamy fine sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 141.14 Min: 42.34	Max: 8.4 Min: 7.9
3	3 inches	44 inches	loamy fine sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 141.14 Min: 42.34	Max: 8.4 Min: 7.9

Soil Map ID: 3

Soil Component Name: Grieta

Soil Surface Texture: loamy fine sand

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Partially hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

			Soil Layer	Information			
	Воц	ındary	Soil Texture Class	Classification		Saturated hydraulic	
Layer	Upper	Lower		AASHTO Group	Unified Soil	conductivity Soil F micro m/sec (pH)	
1	0 inches	7 inches	loamy fine sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.9

			Soil Layer	Information			
	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
2	7 inches	14 inches	sandy clay loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.9
3	50 inches	59 inches	coarse sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.9
4	38 inches	50 inches	coarse sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.9
5	20 inches	38 inches	coarse sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.9
6	14 inches	20 inches	sandy clay loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.9

Soil Map ID: 4

Soil Component Name: Grieta

Soil Surface Texture: fine sandy loam

Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse Hydrologic Group:

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	3 inches	fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.4
2	3 inches	11 inches	fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.4
3	33 inches	48 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.4
4	48 inches	59 inches	loamy sand	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.4
5	11 inches	33 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 14.11 Min: 4.23	Max: 8.4 Min: 7.4

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

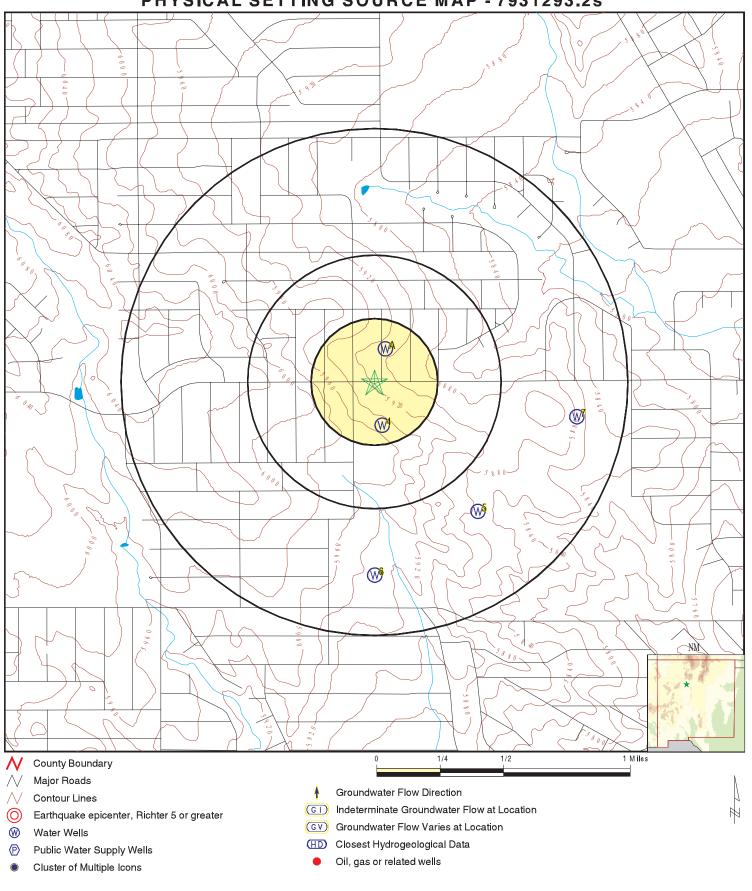
FEDERAL USGS WELL INFORMATION

MAP ID WELL ID LOCATION FROM TP

No Wells Found

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID FROM TP


No PWS System Found

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
	NM7000000156790	0 - 1/8 Mile NNE
A2	NM700000116291	1/8 - 1/4 Mile North
A3	NM700000006520	1/8 - 1/4 Mile NNE
4	NM700000174724	1/8 - 1/4 Mile South
5	NM700000174667	1/2 - 1 Mile SE
6	NM700000174727	1/2 - 1 Mile South
7	NM700000174725	1/2 - 1 Mile East

PHYSICAL SETTING SOURCE MAP - 7931293.2s

SITE NAME: Corr Well 9 ADDRESS: King Blvd

Rio Rancho NM 87144 LAT/LONG: 35.32002 / 106.761838 CLIENT: Rocky Mountain Ecology, LLC CONTACT: Clay Benton

INQUIRY #: 7931293.2s

DATE: March 19, 2025 12:36 pm

Map ID Direction Distance

EDR ID Number Elevation Database

A1 NNE

0 - 1/8 Mile Lower

Basin:

WELLS:

Well Name: Not Reported

72-12-1 livestock watering Well Use:

Water Rights Status: Water Rights Use: Not Reported Permit POD Basin: Rio Grande POD #: 60187 POD Suffix: POD2 Land Grant: Not Reported Not Reported Plug Date: Not Reported **Drilling Started:** Elevation: Well Depth (ft): 1100 0 Well Schedule Date: Not Reported Pump Type: Not Reported Discharge Pipe Size: Aquifer: Not Reported Not Reported OSE Well Tag: POD Status: Not Reported Pending

Max Diversion Allowed: Diversion Amt Allowed (acre-ft):

Rio Grande

Well Completed: Not Reported Completion Proved: Not Reported

Groundwater Source: Not Reported % Shallow:

OSE Filing Date: Depth to Water (ft): Not Reported

Not Reported Pump Serial #: Surface Water Diversion: 0 Estimated Yield: Casing Size (in): 4.5

POD Sub Basin: Middle Rio Grande

Static Level:

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

Sub Basin:

I&basin=RG&nbr=60187&suffix=

North

1/8 - 1/4 Mile Lower

WELLS:

Well Name: Not Reported

Well Use: 72-12-1 domestic one household

Water Rights Status: Permit Water Rights Use: Not Reported POD Basin: POD #: Rio Grande 76340 Land Grant: POD Suffix: Not Reported Not Reported **Drilling Started:** 30-JUL-01 Plug Date: Not Reported Elevation: Well Depth (ft): 1020

Well Schedule Date: Not Reported Pump Type: Not Reported Discharge Pipe Size: Aquifer: Not Reported Not Reported OSE Well Tag: POD Status: Active Not Reported Basin: Rio Grande Sub Basin: Middle Rio Grande

Diversion Amt Allowed (acre-ft): 3 Max Diversion Allowed:

Well Completed: 02-AUG-01 Completion Proved: Not Reported Groundwater Source: Shallow % Shallow: 100 Depth to Water (ft): 870 OSE Filing Date: 07-AUG-01 Pump Serial #: Not Reported Surface Water Diversion: 0

Estimated Yield: 25 Casing Size (in): 4

POD Sub Basin: Middle Rio Grande

Static Level:

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

I&basin=RG&nbr=76340&suffix=

NM WELLS

NM WELLS

NM700000156790

Middle Rio Grande

NM700000116291

Map ID Direction Distance

Elevation Database EDR ID Number

A3 NNE 1/8 - 1/4 Mile Lower

NM WELLS NM700000006520

WELLS:

Well Name: Not Reported

Well Use: 72-12-1 livestock watering

Water Rights Status: Permit

Water Rights Use: 72-12-1 livestock watering

POD Basin: Rio Grande POD #: 60187
POD Suffix: POD1 Land Grant: Not Reported
Drilling Started: 19-AUG-05 Plug Date: Not Reported

Elevation: 0 Well Depth (ft): 980

Well Schedule Date: Pump Type: Not Reported Not Reported Aquifer: Not Reported Discharge Pipe Size: Not Reported OSE Well Tag: POD Status: Active Not Reported Basin: Rio Grande Sub Basin: Middle Rio Grande

Diversion Amt Allowed (acre-ft): 3 Max Diversion Allowed: 0

Well Completed: 17-JAN-06 Completion Proved: Not Reported

Groundwater Source: Shallow % Shallow: 100

Depth to Water (ft): 870 OSE Filing Date: 08-FEB-06

Pump Serial #: Not Reported Surface Water Diversion: 0
Estimated Yield: 4 Casing Size (in): 4.5

POD Sub Basin: Middle Rio Grande

Static Level: 0

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

I&basin=RG&nbr=60187&suffix=

4 South NM WELLS NM700000174724 1/8 - 1/4 Mile

Higher WELLS:

Well Name: Not Reported

Well Use: Municipal - city or county supplied water

Water Rights Status: Notice of Intention

Water Rights Use:Not ReportedPOD Basin:Rio GrandePOD #:91265POD Suffix:POD34Land Grant:Not ReportedDrilling Started:Not Reported

Plug Date: Not Reported Elevation: 0

Well Depth (ft): 10000 Well Schedule Date: Not Reported Pump Type: Not Reported Discharge Pipe Size: Not Reported Aquifer: 72-12-25 POD Status: Not Reported OSE Well Tag: Rio Grande Not Reported Basin:

Sub Basin: Rio Puerco Diversion Amt Allowed (acre-ft): 0

Max Diversion Allowed:0Well Completed:Not ReportedCompletion Proved:Not ReportedGroundwater Source:Not Reported

% Shallow: 0 Depth to Water (ft): 0

OSE Filing Date: Not Reported Pump Serial #: Not Reported

Surface Water Diversion: 0 Estimated Yield: 0

Casing Size (in): 0 POD Sub Basin: Middle Rio Grande

Static Level: 0

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

I&basin=RG&nbr=91265&suffix=

Map ID Direction Distance

Elevation Database EDR ID Number

5 SE 1/2 - 1 Mile

NM WELLS NM700000174667

WELLS:

Lower

Well Name: Not Reported

Well Use: Municipal - city or county supplied water

Water Rights Status: Notice of Intention

Water Rights Use:Not ReportedPOD Basin:Rio GrandePOD #:91311POD Suffix:POD1Land Grant:Not ReportedDrilling Started:Not Reported

Plug Date: Not Reported Elevation: Well Depth (ft): Well Schedule Date: Not Reported Pump Type: Discharge Pipe Size: Not Reported Not Reported Aquifer: 72-12-25 POD Status: Not Reported OSE Well Tag: Not Reported Basin: Rio Grande

Sub Basin: Middle Rio Grande

Diversion Amt Allowed (acre-ft): 0 Max Diversion Allowed:

Well Completed: Not Reported Completion Proved: Not Reported

Groundwater Source: Not Reported % Shallow: 0

Depth to Water (ft): 0 OSE Filing Date: Not Reported

Pump Serial #:Not ReportedSurface Water Diversion:0Estimated Yield:0Casing Size (in):0

POD Sub Basin: Middle Rio Grande

Static Level: 0

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

I&basin=RG&nbr=91311&suffix=

6 South NM WELLS NM700000174727

1/2 - 1 Mile Higher

WELLS:

Well Name: Not Reported

Well Use: Municipal - city or county supplied water

Water Rights Status: Notice of Intention

Water Rights Use: Not Reported POD Basin: Rio Grande POD #: 91265 POD Suffix: POD37 Land Grant: Not Reported Drilling Started: Not Reported

Plug Date: Not Reported Elevation: 0

Well Depth (ft): 10000 Well Schedule Date: Not Reported Pump Type: Not Reported Discharge Pipe Size: Not Reported Aquifer: 72-12-25 POD Status: Not Reported OSE Well Tag: Rio Grande Not Reported Basin:

Sub Basin: Rio Puerco Diversion Amt Allowed (acre-ft): 0

Max Diversion Allowed:0Well Completed:Not ReportedCompletion Proved:Not ReportedGroundwater Source:Not Reported

% Shallow: 0 Depth to Water (ft): 0

OSE Filing Date: Not Reported Pump Serial #: Not Reported

Surface Water Diversion: 0 Estimated Yield: 0

Casing Size (in): 0 POD Sub Basin: Middle Rio Grande

Static Level: 0

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

I&basin=RG&nbr=91265&suffix=

Map ID Direction Distance

Elevation Database EDR ID Number

7 East NM WELLS NM700000174725 1/2 - 1 Mile

Lower

WELLS:

Well Name: Not Reported

Well Use: Municipal - city or county supplied water

Water Rights Status: Notice of Intention

Water Rights Use:Not ReportedPOD Basin:Rio GrandePOD #:91265POD Suffix:POD35Land Grant:Not ReportedDrilling Started:Not Reported

Plug Date: Elevation: Not Reported Well Depth (ft): 10000 Well Schedule Date: Not Reported Pump Type: Not Reported Discharge Pipe Size: Not Reported Aquifer: 72-12-25 POD Status: Not Reported Not Reported **OSE** Well Tag: Rio Grande Basin:

Sub Basin: Rio Puerco Diversion Amt Allowed (acre-ft): 0

Max Diversion Allowed:0Well Completed:Not ReportedCompletion Proved:Not ReportedGroundwater Source:Not Reported

% Shallow: 0 Depth to Water (ft): 0

OSE Filing Date: Not Reported Pump Serial #: Not Reported

Surface Water Diversion: 0 Estimated Yield: 0

Casing Size (in): 0 POD Sub Basin: Middle Rio Grande

Static Level: 0

Water Rights Summary URL: http://nmwrrs.ose.state.nm.us/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxm

I&basin=RG&nbr=91265&suffix=

AREA RADON INFORMATION

Federal EPA Radon Zone for SANDOVAL County: 2

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for SANDOVAL COUNTY, NM

Number of sites tested: 140

Average Activity % 4-20 pCi/L % >20 pCi/L Area % <4 pCi/L Living Area - 1st Floor 3.371 pCi/L 87% 11% 1% Not Reported Living Area - 2nd Floor Not Reported Not Reported Not Reported 0% Basement 5.425 pCi/L 50% 50%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: US Fish & Wildlife Service Telephone: 505-248-6660

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Water Well Database

Source: Office of the State Engineer

Telephone: 505-827-6175

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Locations

Source: New Mexico Institute of Mining and Technology

Telephone: 505-835-5142

RADON

State Database: NM Radon

Source: Environment Department Telephone: 505-827-1093 Radon Test Results

Area Radon Information Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at

private sources such as universities and research institutions.

EPA Radon Zones Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Appendix F.
Public Scoping

In accordance with 42 U.S.C § 4332 the USACE initiated public involvement and agency scoping activities to solicit input on the 2025 draft EA King Blvd Waterline Extension, Sandoval County, New Mexico. The public was provided a Notice of Availability for a 30-day review period of the draft EA from August 17, 2025, to September 15 2025. A hardcopy of the draft EA was made available for public review at the Loma Colorado Main Library, Rio Rancho NM, during the public review period. Section 106 Consultation Letters to Tribes and SHPO concurrence letter can be found in the Cultural Appendix D.

An electronic copy of the draft EA was made available in the following USACE webpage, which also contains the final EA post public review:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/Environmental-Assessments-FONSI/

The Notice of Availability was published in the Rio Rancho Observer prior to the start of the public review period. Agencies and entities that were contacted in preparation of this EA include:

Shawn Sartorius New Mexico Ecological Services Field Office U.S. Fish and Wildlife Service

Mark Horner New Mexico Ecological Services Field Office U.S. Fish and Wildlife Service

Erin Salano New Mexico Department of Game and Fish Conservation Services Division

Jack Marchetti
Fisheries Management Division
New Mexico Department of Game and Fish

Laura McCarthy
New Mexico Forestry
New Mexico Energy Minerals and Natural Resources Department

Toby Velasquez New Mexico State Parks Director New Mexico Energy Minerals and Natural Resources Department Joey Fleming New Mexico State Park Division New Mexico Energy Minerals and Natural Resources Department

Dana Vackar Strang
Surface Resources Division
New Mexico State Land Office

Eli Martinez Office of Communities, Tribes and Environmental Assessment U.S. Environmental Protection Agency

Michelle M. Ensey State Historic Preservation Officer Historic Preservation Division

Comments during the 30-day public review period of the draft EA from August 17, 2025, to September 15, 2025, were received from Agencies and SHPO. A comment response table is provided below:

Commenter	Comment	Response
New Mexico Energy Minerals and Natural Resources Department	The two State parcels directly adjacent to the project are owned by the State Land Office (SLO). We did not see SLO listed as a consulted agency in the draft EA, so we would like to recommend that USACE contact SLO directly for comment if you have not already. We can provide relevant contact info if this would be helpful.	Concur, and contacted SLO to take part of the 30-day Public Review period.
New Mexico Department of Game and Fish	 Due to the large amounts of soil proposed for removal, in addition to the burrowing owl and prairie dog surveys recommended in the NMERT-generated report, the Department recommends surveying the project area for any burrowing wildlife species prior to the initiation of any soil moving activities. If disturbance of any detected burrowing wildlife cannot be avoided, then a qualified biologist should be engaged to capture and move any such wildlife. For post-construction reclamation of the project area, the Department recommends that only native plant species are used in the reclamation seed mix 	Concur, and incorporated these comments into the EA's list of BMPs.

	and that the mix is designed to enhance local pollinator habitat. The Department also recommends that the seed mix and mulch be	
	certified weed-free to avoid inadvertently introducing non-native species to the reclamation	
	site. Any alternate plant species, used to substitute for primary plant species that are unavailable at the time of reclamation, should also be native. When	
	possible, the Department recommends using seeds that are sourced from the same region and habitat	
	type as the reclamation site and suggests including seeds from a region that represents potential future climatic conditions at the site.	
State Historic Preservation Office	SHPO concurs with the determination of No Historic Properties affected by the project.	Noted

Comments during a previous public outreach event in March 2024 were received from USFWS, BOR, OSE, and SHPO. A comment response table is provided below:

Commenter	Comment	Response
U.S. Fish and Wildlife Service	The USFWS requests that impacts to Bendire's thrasher be included in the NEPA analysis.	Bendire's thrasher has been included in Section 3.3.3 of the EA.
U.S. Bureau of Reclamation	The BOR has no comments.	Noted
NM Office of the State Engineer/Interstate Stream Commission	The OSE recommends to properly identify the subject well as "RG-26259 POD3", rather than "Well 9R". The OSE advises that other federal, state, county and city agencies may want to review the existing OSE permit for the subject well.	Noted
State Historic Preservation Office	SHPO concurs with the determination of No Historic Properties Affected by the project.	Noted

Date: 08/11/2025

El Defensor Chieftain RIO RANCHO OBSERVER VALENCIA News-Bulletin

Albuquerque Publishing Company 7777 Jefferson St. NE Albuquerque NM 87109

ADVERTISING INVOICE

U.S. ARMY CORPS OF ENGINEERS, ALB DIST U.S. ARMY CORP OF ENGINEERS ALB DIST 4101 JEFFERSON PLAZA ALBUQUERQUE, NM 87109

ACCOUNT NUMBER: 1112252 INVOICE NUMBER: 269380

RUN DATES: 08/17/25 - 08/17/25

PO NUMBER:

PUB DATE	DESCRIPTION	AMOUNT
08/17/25	Rio Rancho Observer	97.94
	1.00 x 0.00	
	SUBTOTAL	\$97.94
	TAX	7.28
	TECH FEE	0.00
	PAYMENT	0.00
	TOTAL DUE	\$105.22

We accept Mastercard, VISA, American Express and Discover Card

MAKE ALL CHECKS PAYABLE TO: Albuquerque Publishing Company Dept 880697 PO Box 29650 Phoenix, AZ 85038-9650 THANK YOU FOR YOUR BUSINESS!

J. Rodrigo Sedeno

8/11/2025

El Defensor Chieftain

RIO RANCHO OBSERVER VALENCIA News-Bulletin

Dept 880697 PO Box 29650 Phoenix, AZ 85038-9650 Phone: (505)823-3220

Proof of Ad 08/11/2025

Account: 1112252

Name: U.S. Army Corps of Engineers, Alb Dist U.S. ARMY CORP OF ENGINEERS ALB DIST Company:

4101 JEFFERSON PLAZA Address: **ALBUQUERQUE, NM 87109**

Telephone: (505)342-3378

> Ad ID: 269380

Description:

Run Dates: 08/17/2025 - 08/17/2025

Class: 3001 Orig User: dmontoya Words: 281

Lines: 86 Agate Lines: 123 Depth: 8.72

Blind Box:

Total Ad Cost \$105.22 **Amount Paid** \$0.00

Publication Start Stop Inserts Cost 08/17/2025 Rio Rancho Observer 08/17/2025 97.94 1

Notice of Availability Draft Environmental Assessment King Blvd Waterline Extension, Sandoval County, New Mexico

The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico.

The DEA titled King Blvd Waterline Extension, Sandoval County, New Mexico evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, NM.

A hard copy of the "draft Environmental Assessment for the King Blvd Waterline Extension" can be sent upon request, and is available electronically at the USACE Albuquerque District website (under "FONSI/Environmental Assessment") at:

https://www.spa.usace.army.mil/Missions/Environmental/ Environmental-Compliance-Documents/

USACE is soliciting comments from concerned agencies and members of the public, per the National Environmental Policy Act directives. The DEA will be available for public review from August 17th 2025, to September 15th 2025.

Written comments may be emailed to: jorge.r.sedeno@usace.army.mil

Or mailed to: U.S. Army Corps of Engineers, Albuquerque Dis-

Environmental Resources Sec-Attn: CESPA-PM-LE (Mr. Jorge

Rodrigo Sedeno)
4101 Jefferson Plaza NE
Albuquerque, New Mexico
87109

The USACE would appreciate receiving comments or any type of feedback no later than September 15th 2025, that way comments can be addressed, and revisions made to the DEA in a timely manner.

Hard copies of the DEA are also available for review at:

 Loma Colorado Main Library 755 Loma Colorado Blvd NE, Rio Rancho, NM. 87124

Observer: August 17, 2025

From: Marchetti, Jack, DGF

To: Sedeno, J Rodrigo CIV USARMY CESPA (USA)

Cc: <u>DGF-EEP-TG</u>

Subject: [Non-DoD Source] RE: [EXTERNAL] Public Review: draft Environmental Assessment - Rio Rancho King blvd

Waterline Extension, Sandoval County, NM

Date: Friday, August 22, 2025 12:59:41 PM

Attachments: <u>image001.png</u> image002.png

project report king blvd waterline extensi 40190 40300.pdf

Hello Rodrigo,

I have reviewed the King Blvd Waterline Extension Project (Project) draft EA and entered it into the New Mexico Environmental Review Tool (NMERT; project number NMERT-5014). Upon entering your project into the NMERT, an auto-generated project report was created (attached here). Please consider the recommendations and Best Management Practices in the project report as well as those mentioned below as the Department's official comments regarding the Project and the draft EA.

Due to the large amounts of soil proposed for removal, in addition to the burrowing owl and prairie dog surveys recommended in the NMERT-generated report, the Department recommends surveying the project area for any burrowing wildlife species prior to the initiation of any soil moving activities. If disturbance of any detected burrowing wildlife cannot be avoided, then a qualified biologist should be engaged to capture and move any such wildlife.

For post-construction reclamation of the project area, the Department recommends that only native plant species are used in the reclamation seed mix and that the mix is designed to enhance local pollinator habitat. The Department also recommends that the seed mix and mulch be certified weed-free to avoid inadvertently introducing non-native species to the reclamation site. Any alternate plant species, used to substitute for primary plant species that are unavailable at the time of reclamation, should also be native. When possible, the Department recommends using seeds that are sourced from the same region and habitat type as the reclamation site and suggests including seeds from a region that represents potential future climatic conditions at the site.

Thank you for the opportunity to review the draft EA for the Project. Please contact me with any questions.

Sincerely,

Jack Marchetti (he/him)
Aquatic/Riparian Habitat Specialist
Fisheries Management Division
New Mexico Department of Game and Fish

Cell: 505-479-1269

jack.marchetti@dgf.nm.gov

From: Sedeno, J Rodrigo CIV USARMY CESPA (USA) < Jorge.R.Sedeno@usace.army.mil>

Sent: Tuesday, August 19, 2025 1:00 PM

To: Salano, Erin, DGF <erin.salano@dgf.nm.gov>

Cc: Marchetti, Jack, DGF < jack.marchetti@dgf.nm.gov>

Subject: RE: [EXTERNAL] Public Review: draft Environmental Assessment - Rio Rancho King blvd

Waterline Extension, Sandoval County, NM

You don't often get email from jorge.r.sedeno@usace.army.mil. Learn why this is important

Hola!

Great, Thank you Erin and Jack!

-Rodrigo

Rodrigo Sedeno

Biologist

505-342-3168 (W) US Army Corps of Engineers 4101 Jefferson Plaza N. E.

4101 Jefferson Plaza N. E. Albuquerque, NM. 87109

From: Salano, Erin, DGF < crin.salano@dgf.nm.gov>

Sent: Tuesday, August 19, 2025 12:56 PM

To: Sedeno, J Rodrigo CIV USARMY CESPA (USA) < <u>Jorge.R.Sedeno@usace.army.mil</u>>

Cc: Marchetti, Jack, DGF < <u>jack.marchetti@dgf.nm.gov</u>>

Subject: [Non-DoD Source] Re: [EXTERNAL] Public Review: draft Environmental Assessment - Rio

Rancho King blvd Waterline Extension, Sandoval County, NM

Hola Rodrigo!

I was instructed to forward this project to my riparian habitat counterpart Jack Marchetti (CCd), to have him be the lead/do the review since it is a water line project. He is typically the one assigned for water line projects and things coming from ACOE and BOR.

Best.

Erin Salano (She/Her) Terrestrial Habitat Specialist

Phone 505.321.5485 **Email** <u>erin.salano@dgf.nm.gov</u> 1 Wildlife Way, Santa Fe, NM 87507

Conserving New Mexico's Wildlife for Future Generations.

CONFIDENTIALITY NOTICE: This e-mail, including all attachments, is for the sole use of the intended recipient[s] and may contain confidential and/or privileged information. Any unauthorized review, use, copying, disclosure, or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender at once and destroy all copies of this message.

From: Sedeno, J Rodrigo CIV USARMY CESPA (USA) < <u>Jorge.R.Sedeno@usace.army.mil</u>>

Sent: Tuesday, August 19, 2025 9:52 AM

To: Salano, Erin, DGF < erin.salano@dgf.nm.gov>

Subject: [EXTERNAL] Public Review: draft Environmental Assessment - Rio Rancho King blvd

Waterline Extension, Sandoval County, NM

You don't often get email from <u>jorge.r.sedeno@usace.army.mil</u>. <u>Learn why this is important</u>

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hello Erin,

I trust all is well!

The US Army Corps of Engineers Albuquerque District is starting the public review period for the Draft Environmental Assessment (DEA) for the Rio Rancho King blvd Waterline Extension in Sandoval County, New Mexico [NMERT Project ID: 4884]. Public review runs from August 17 – September 15, 2025. The DEA and appendices are uploaded to our Environmental Compliance Documents web page:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/Environmental-Assessments-FONSI/

We would be happy to send these documents as hard copies if you prefer.

Thanks for all the attention!

-Rodrigo

Rodrigo Sedeno

Biologist

Environmental Resources Section Planning & Program Management Division 505-342-3168 (w)

US Army Corps of Engineers

4101 Jefferson Plaza N. E. Albuquerque, NM. 87109

From: Fleming, Joseph, EMNRD

To: Sedeno, J Rodrigo CIV USARMY CESPA (USA)

Cc: Velasquez, Toby, EMNRD; Baker, Colleen, EMNRD; Darr, Ryan, EMNRD

Subject: [Non-DoD Source] RE: [EXTERNAL] RE: Public Review: draft Environmental Assessment - Rio Rancho King blvd

Waterline Extension, Sandoval County, NM

Date: Wednesday, August 27, 2025 8:41:24 AM

Attachments: image002.png image003.png

Good morning, Rodrigo,

Sure thing, happy to help. Please see the info below for each agency:

Like NM State Parks, **NM Forestry** is a division of the Energy, Minerals and Natural Resources Department, and has their own Director, Director Laura McCarthy (<u>laura.mccarthy@emnrd.nm.gov</u>), and so you may consider sending your request to her to be routed accordingly. The project is in their Bernalillo District (District 6). Here is the district's contact info and a link to the <u>NM Forestry District 6</u> Staff Directory:

District 6 - Bernalillo 5105 Santa Fe Hills Blvd NE Rio Rancho, NM 87144 505-205-0343

For **NM State Land Office**, consider contacting Dana Vackar Strang, Assistant Commissioner of Surface Resources (dvstrang@nmslo.gov) or their Surface Resources Division at (505) 827-5729. This Division has their Environmental Compliance Office and Agricultural Leasing Staff. Here's a link to their Surface Resources Staff directory for individual contact info. The project is in their Albuquerque District:

District Office – Albuquerque 700 Lomas NE, Suite 101 Albuquerque, NM 87102 (505) 539-5763

Thank you,

-Joey

From: Sedeno, J Rodrigo CIV USARMY CESPA (USA) <Jorge.R.Sedeno@usace.army.mil>

Sent: Tuesday, August 26, 2025 9:52 AM

To: Fleming, Joseph, EMNRD < Joseph. Fleming@emnrd.nm.gov>

Cc: Velasquez, Toby, EMNRD <toby.velasquez@emnrd.nm.gov>; Darr, Ryan, EMNRD <Ryan.Darr@emnrd.nm.gov>; Baker, Colleen, EMNRD <Colleen.Baker@emnrd.nm.gov>

Subject: [EXTERNAL] RE: Public Review: draft Environmental Assessment - Rio Rancho King blvd

Waterline Extension, Sandoval County, NM

Some people who received this message don't often get email from jorge.r.sedeno@usace.army.mil. Learn why this is important

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hello Joey,

Thank you for your thorough review of the daft EA.

USACE did contact NMDGF, but did not contact SLO or EMNRD-Forestry Division. Could you please provide a contact for SLO and a contact for EMNRD-Forestry Division.

Thank you for recommending contacting the above partner state agencies, I think their review and input would greatly improve this waterline extension project.

Cheers.

-Rodrigo

Rodrigo Sedeno

Biologist

Environmental Resources Section Planning & Program Management Division 505-342-3168 (w)

US Army Corps of Engineers

4101 Jefferson Plaza N. E. Albuquerque, NM. 87109

From: Fleming, Joseph, EMNRD < <u>Joseph.Fleming@emnrd.nm.gov</u>>

Sent: Thursday, August 21, 2025 2:33 PM

To: Sedeno, J Rodrigo CIV USARMY CESPA (USA) <<u>Jorge.R.Sedeno@usace.army.mil</u>>
Cc: Velasquez, Toby, EMNRD <<u>toby.velasquez@emnrd.nm.gov</u>>; Darr, Ryan, EMNRD <<u>Ryan.Darr@emnrd.nm.gov</u>>; Baker, Colleen, EMNRD <<u>Colleen.Baker@emnrd.nm.gov</u>>

Subject: [Non-DoD Source] Public Review: draft Environmental Assessment - Rio Rancho King blvd Waterline Extension, Sandoval County, NM

Good afternoon, Mr. Sedeno,

Thank you for contacting NM State Parks about the public review period for the Draft Environmental Assessment (DEA) for the Rio Rancho King blvd Waterline Extension in Sandoval County, New Mexico. We have reviewed the draft EA and do not have any comments related to NM State Parks on the draft EA or appendices. We would like to share two notes related to partner state agencies:

 The two State parcels directly adjacent to the project are owned by the State Land Office (SLO). We did not see SLO listed as a consulted agency in the draft EA, so we would like to recommend that USACE contact SLO directly for comment if you have not already. We can

- provide relevant contact info if this would be helpful.
- USACE has likely already contacted EMNRD Forestry Division, which is responsible for state-listed plant species, and for NMDGF, which is responsible for state-listed wildlife species, for their review of the draft EA. If not, we can also provide contact information for these agencies if this would be helpful.

Thank you again for contacting us and have a nice day,

Joey Fleming (He/Him) | Park Planner (505) 469-6317 New Mexico State Parks Division

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 4101 JEFFERSON PLAZA NE ALBUQUERQUE NM 87109-3435

August 12, 2025

Planning, Project, and Program Management Division Planning Branch Environmental Resources Section

Mr. Eli Martinez
Office of Communities, Tribes and Environmental Assessment
U.S. Environmental Protection Agency
1201 Elm Street, Suite 500 (ORACN)
Dallas, Texas 75270-2102

Dear Mr. Martinez:

The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico (Enclosure 1).

The DEA titled *King Blvd Waterline Extension, Sandoval County, New Mexico* evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, New Mexico (Enclosure 2). Construction is anticipated to start in January 2026, with an estimated duration of 4 months.

A hard copy of the "draft Environmental Assessment for the King Blvd Waterline Extension, Sandoval County, New Mexico" can be sent upon request, and is available electronically at the USACE Albuquerque District website (under "FONSI/Environmental Assessment") at:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/

The USACE is soliciting comments from members of the public and concerned agencies in compliance with the National Environmental Policy Act. The DEA will be available for public review from August 17th 2025 until September 15th 2025.

Written comments may be emailed to: <u>jorge.r.sedeno@usace.army.mil</u> Or mailed to: U.S. Army Corps of Engineers, Albuquerque District

Environmental Resources Section

Attn: CESPA-PM-LE (Mr. Jorge Rodrigo Sedeno)

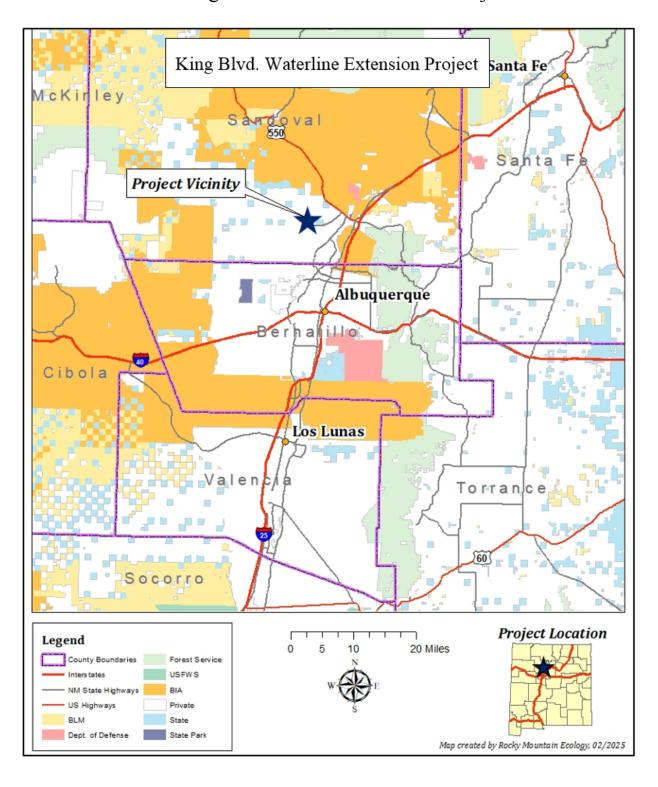
4101 Jefferson Plaza NE

Albuquerque, New Mexico 87109

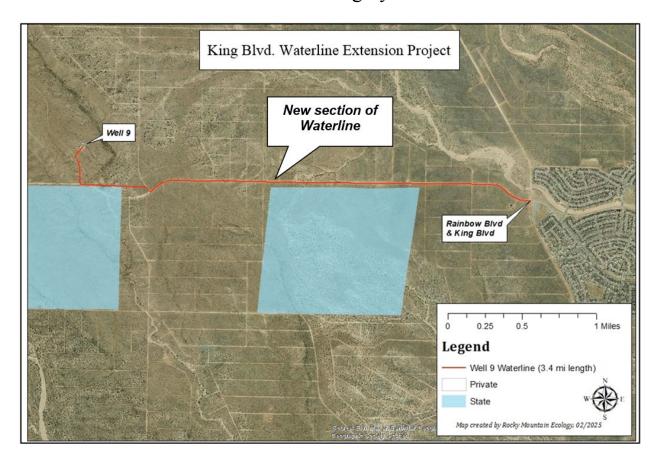
The USACE would appreciate receiving comments no later than **September 15th 2025**, that way comments can be addressed, and revisions made to the DEA in a timely manner.

If you have any questions or need additional information, please consider the following contacts:

- Ms. Kaitlyn Fuqua, Archeologist, e-mail: kaitlyn.n.fuqua@usace.army.mil
- Mr. Jorge Rodrigo Sedeno, Biologist, e-mail: jorge.r.sedeno@usace.army.mil


Sincerely,

Danielle A. Galloway


Chief, Environmental Resources Section

Danielle A. Galloway

Enclosure 1: King Blvd Waterline Extension Project Location

Enclosure 2: King Blvd. Waterline Extension Project Location with aerial imagery

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 4101 JEFFERSON PLAZA NE ALBUQUERQUE NM 87109-3435

August 12, 2025

Planning, Project, and Management Division Planning Branch Environmental Resources Section

Loma Colorado Main Library 755 Loma Colorado Blvd NE, Rio Rancho, NM. 87124

Dear Librarian:

We kindly request to make the enclosed copy of the Draft Environmental Assessment, titled "Environmental Assessment – King Blvd Waterline Extension, Rio Rancho, Sandoval County, New Mexico" available for a 30-day public review period beginning on August 17th 2025 and concluding on September 15th 2025.

Following this public review period, you may destroy the document or keep for your records. We appreciate your attention and cooperation in this regard, and if you have any questions or concerns, please contact Mr. Rodrigo Sedeno at (505) 342-3168, email: jorge.r.sedeno@usace.army.mil

Thank you.

Sincerely,

Danielle A. Galloway

Chief, Environmental Resources Section

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 4101 JEFFERSON PLAZA NE ALBUQUERQUE NM 87109-3435

August 12, 2025

Planning, Project, and Program Management Division Planning Branch Environmental Resources Section

Ms. Erin Solano New Mexico Department of Game and Fish One Wildlife Way Santa Fe, NM 87507

Dear Erin Solano:

The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico (Enclosure 1).

The DEA titled *King Blvd Waterline Extension, Sandoval County, New Mexico* [NMERT Project ID: 4884] evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, New Mexico (Enclosure 2). Construction is anticipated to start in January 2026, with an estimated duration of 4 months.

A hard copy of the "draft Environmental Assessment for the King Blvd Waterline Extension, Sandoval County, New Mexico" can be sent upon request, and is available electronically at the USACE Albuquerque District website (under "FONSI/Environmental Assessment") at:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/

Fish and wildlife resources including State-listed species are addressed in Sections 3.3 [Biological Environment] and 3.3.3 [Special Status Species] of the DEA. The USACE determined that the recommended plan would have a No-Effect on State-listed species or designated critical habitat.

USACE is soliciting comments from members of the public and concerned agencies in compliance with the National Environmental Policy Act. The DEA will be available for public review from August 17th 2025 until September 15th 2025.

Written comments may be emailed to: jorge.r.sedeno@usace.army.mil

Or mailed to: U.S. Army Corps of Engineers, Albuquerque District

Environmental Resources Section

Attn: CESPA-PM-LE (Mr. Jorge Rodrigo Sedeno)

4101 Jefferson Plaza NE

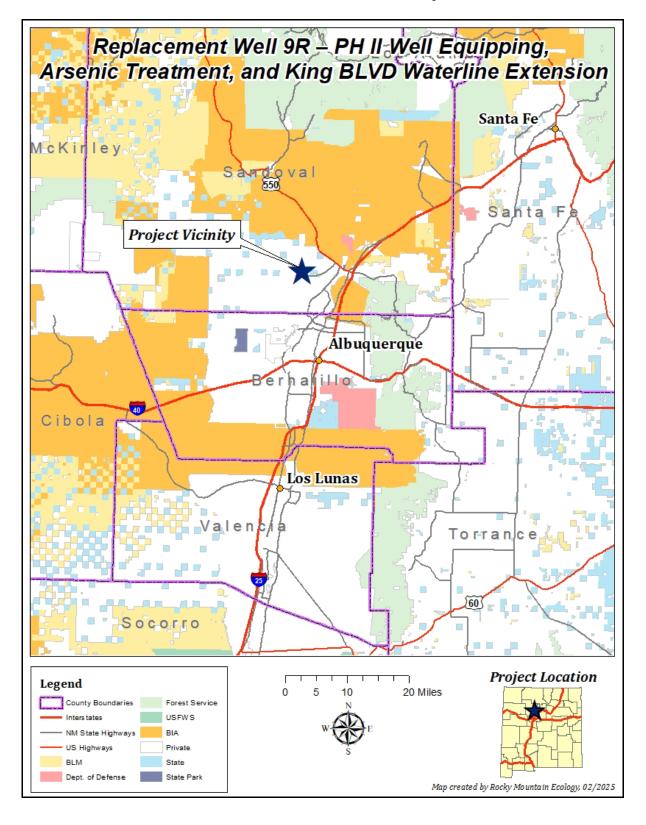
Albuquerque, New Mexico 87109

USACE would appreciate receiving comments no later than **September 15th 2025**, that way comments can be addressed, and revisions made to the DEA in a timely manner.

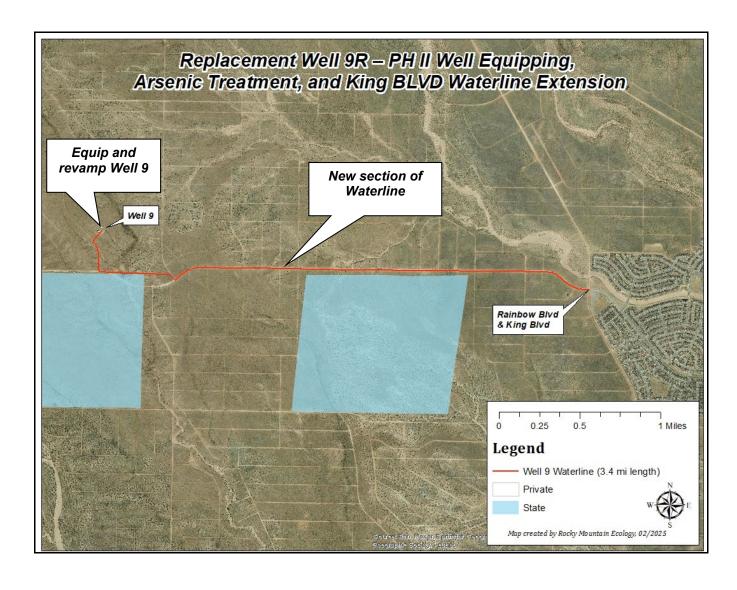
If you have any questions or need additional information, please consider the following contacts:

• Ms. Kaitlyn Fuqua, Archeologist, e-mail: kaitlyn.n.fuqua@usace.army.mil

• Mr. Jorge Rodrigo Sedeno, Biologist, e-mail: jorge.r.sedeno@usace.army.mil


Sincerely,

Danielle A. Galloway


Chief, Environmental Resources

Danielle A. Galloway

Enclosure 1: Location of Project

Enclosure 2: Proposed Action

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 4101 JEFFERSON PLAZA NE ALBUQUERQUE NM 87109-3435

August 12, 2025

Planning, Project, and Program Management Division Planning Branch Environmental Resources Section

Mr. Toby Velasquez New Mexico State Parks Director 1220 S. St. Francis Drive, Santa Fe, NM 87505

Dear Mr. Velasquez,

The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico (Enclosure 1).

The DEA titled *King Blvd Waterline Extension, Sandoval County, New Mexico* [NMERT Project ID: 4884], evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, New Mexico (Enclosure 2). Construction is anticipated to start in January 2026, with an estimated duration of 4 months

A hard copy of the "draft Environmental Assessment for the King Blvd Waterline Extension, Sandoval County, New Mexico" can be sent upon request, and is available electronically at the USACE Albuquerque District website (under "FONSI/Environmental Assessment") at:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/

Fish and wildlife resources including federal and state listed species are addressed in Sections 3.3 [Biological Environment], 3.3.3 [Special Status Species] and 3.4 [Cultural Resources] of the DEA. Pursuant to Section 7 of the Endangered Species Act of 1973, as amended, USACE determined that the recommended plan would have a No-Effect on state and federally listed species or designated critical habitat.

The USACE is soliciting comments from members of the public and concerned agencies in compliance with the National Environmental Policy Act. The DEA will be available for public review from August 17th 2025 until September 15th 2025.

Written comments may be emailed to: <u>jorge.r.sedeno@usace.army.mil</u>

Or mailed to: U.S. Army Corps of Engineers, Albuquerque District

Environmental Resources Section

Attn: CESPA-PM-LE (Mr. Jorge Rodrigo Sedeno)

4101 Jefferson Plaza NE

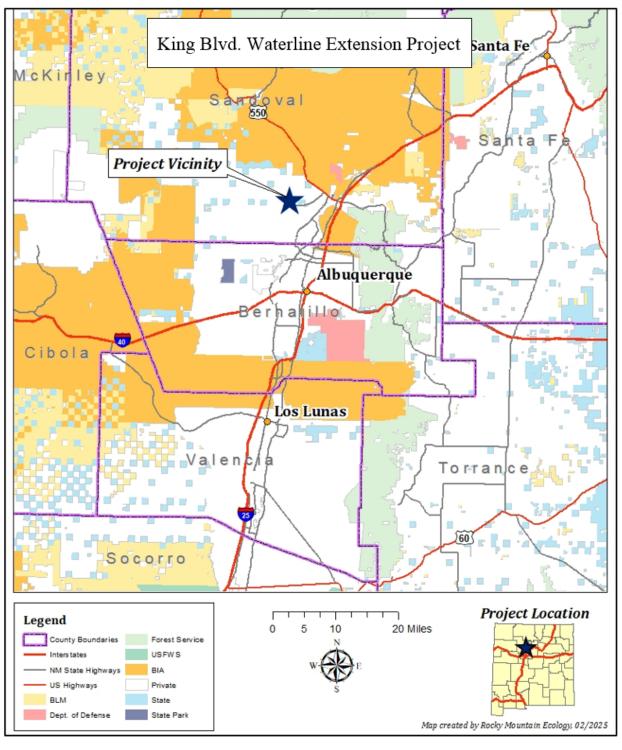
Albuquerque, New Mexico 87109

The USACE would appreciate receiving comments no later than **September 15th 2025**, that way comments can be addressed, and revisions made to the DEA in a timely manner.

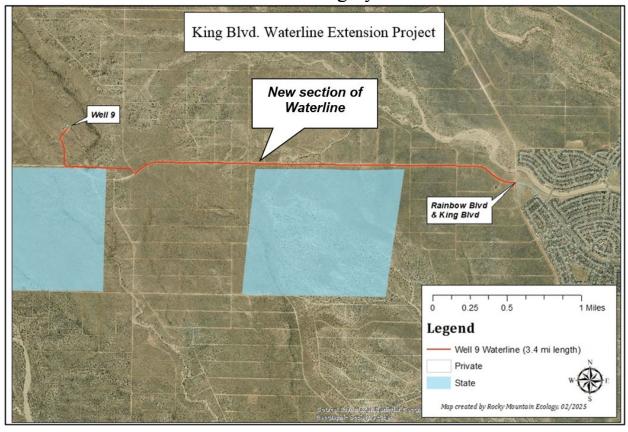
If you have any questions or need additional information, please consider the following contacts:

• Ms. Kaitlyn Fuqua, Archeologist, e-mail: kaitlyn.n.fuqua@usace.army.mil

• Mr. Jorge Rodrigo Sedeno, Biologist, e-mail: jorge.r.sedeno@usace.army.mil


Sincerely,

Danielle A. Galloway


Chief, Environmental Resources

Danielle A. Galloway

Enclosure 1: King Blvd Waterline Extension Project Location

Enclosure 2: King Blvd. Waterline Extension Project Location with aerial imagery

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 4101 JEFFERSON PLAZA NE ALBUQUERQUE NM 87109-3435

August 12, 2025

Planning, Project, and Program Management Division Planning Branch Environmental Resources Section

Mr. Shawn Sartorius U. S. Fish and Wildlife Service New Mexico Ecological Services Field Office 2105 Osuna NE Albuquerque, NM 87113-1001

Dear Mr. Shawn Sartorius,

The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico (Enclosure 1).

The DEA titled *King Blvd Waterline Extension, Sandoval County, New Mexico* evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, New Mexico (Enclosure 2). Construction is anticipated to start in January 2026, with an estimated duration of 4 months.

A hard copy of the "draft Environmental Assessment for the King Blvd Waterline Extension, Sandoval County, New Mexico" can be sent upon request, and is available electronically at the USACE Albuquerque District website (under "FONSI/Environmental Assessment") at:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/

Fish and wildlife resources including listed species are addressed in Sections 3.3 [Biological Environment] and 3.3.3 [Special Status Species] of the DEA. Pursuant to Section 7 of the Endangered Species Act of 1973, as amended, USACE determined that the recommended plan would have a No-Effect on federally listed species or designated critical habitat.

The USACE is soliciting comments from members of the public and concerned agencies in compliance with the National Environmental Policy Act. The DEA will be available for public review from August 17th 2025 until September 15th 2025.

Written comments may be emailed to: jorge.r.sedeno@usace.army.mil

Or mailed to: U.S. Army Corps of Engineers, Albuquerque District

Environmental Resources Section

Attn: CESPA-PM-LE (Mr. Jorge Rodrigo Sedeno)

4101 Jefferson Plaza NE

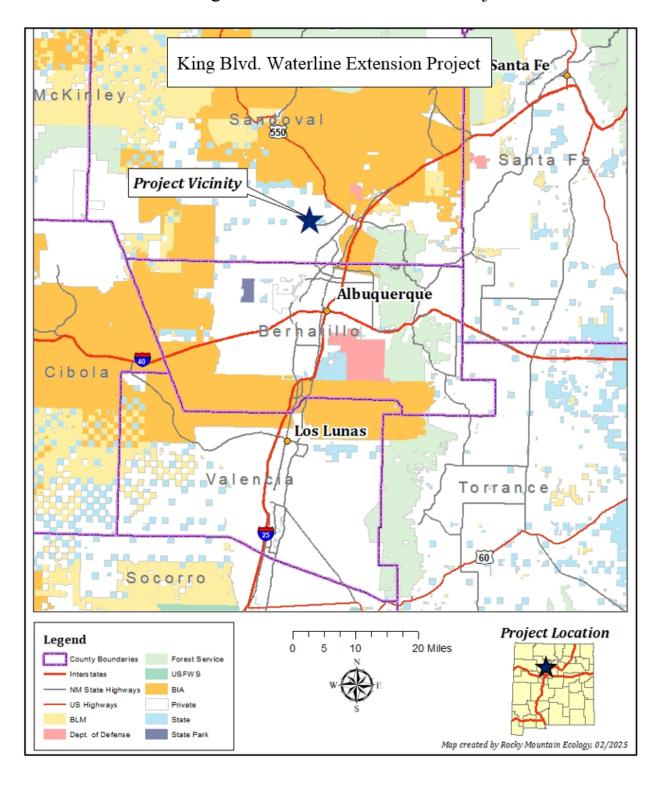
Albuquerque, New Mexico 87109

The USACE would appreciate receiving comments no later than **September 15th 2025**, that way comments can be addressed, and revisions made to the DEA in a timely manner.

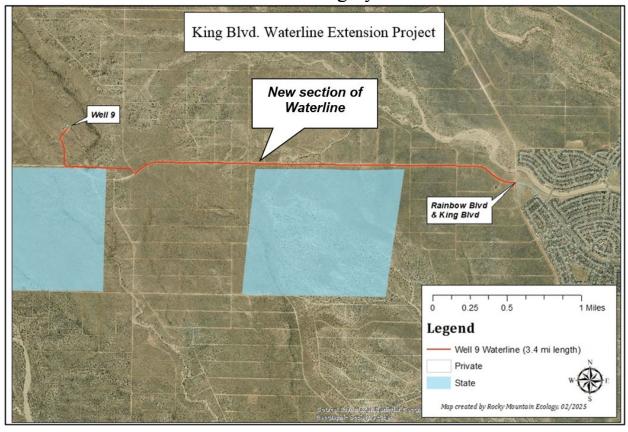
If you have any questions or need additional information, please consider the following contacts:

• Ms. Kaitlyn Fuqua, Archeologist, e-mail: kaitlyn.n.fuqua@usace.army.mil

• Mr. Jorge Rodrigo Sedeno, Biologist, e-mail: jorge.r.sedeno@usace.army.mil


Sincerely,

Danielle A. Galloway


Chief, Environmental Resources

Danielle A. Galloway

Enclosure 1: King Blvd Waterline Extension Project Location

Enclosure 2: King Blvd. Waterline Extension Project Location with aerial imagery

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 4101 JEFFERSON PLAZA NE ALBUQUERQUE NM 87109-3435

August 12, 2025

Planning, Project, and Program Management Division Planning Branch Environmental Resources Section

Dear Neighbors and Community Members:

The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico (Enclosure 1).

The DEA titled *King Blvd Waterline Extension, Sandoval County, New Mexico* evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, New Mexico (Enclosure 2). Construction is anticipated to start in January 2026, with an estimated duration of 4 months.

A hard copy of the "draft Environmental Assessment for the King Blvd Waterline Extension, Sandoval County, New Mexico" can be sent upon request, and is available electronically at the USACE Albuquerque District website (under "FONSI/Environmental Assessment") at:

https://www.spa.usace.army.mil/Missions/Environmental/Environmental-Compliance-Documents/

A hard copy of the DEA is also available for review at:

 Loma Colorado Main Library 755 Loma Colorado Blvd NE, Rio Rancho, NM. 87124

The USACE is soliciting comments from members of the public and concerned agencies in compliance with the National Environmental Policy Act. The DEA will be available for public review from August 17th 2025 until September 15th 2025.

Written comments may be emailed to: <u>jorge.r.sedeno@usace.army.mil</u> Or mailed to: U.S. Army Corps of Engineers, Albuquerque District

Environmental Resources Section

Attn: CESPA-PM-LE (Mr. Jorge Rodrigo Sedeno)

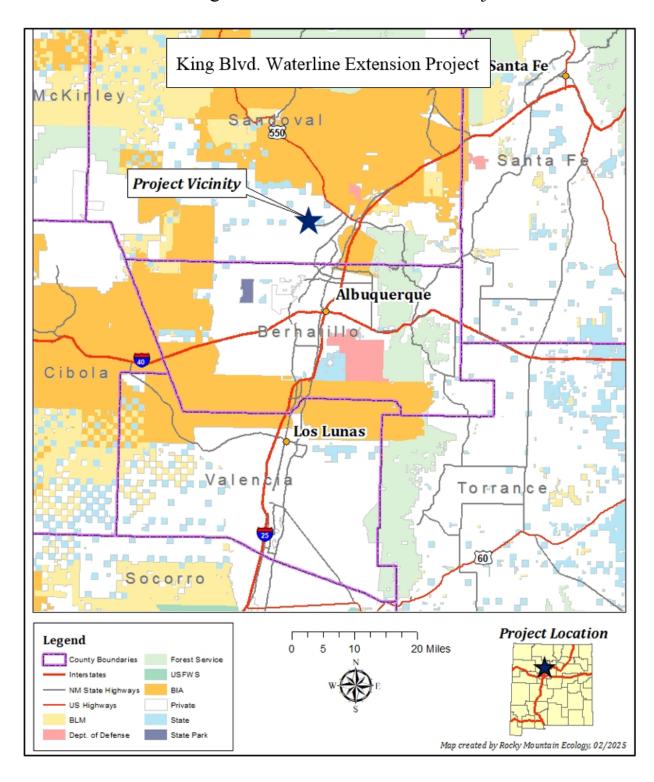
4101 Jefferson Plaza NE

Albuquerque, New Mexico 87109

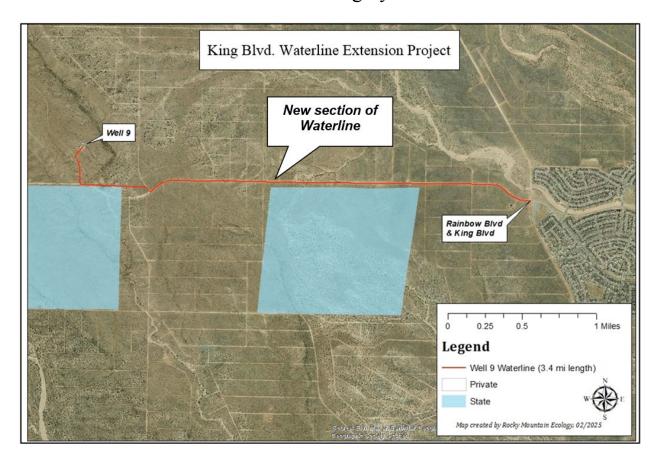
The USACE would appreciate receiving comments no later than **September 15th 2025**, that way comments can be addressed, and revisions made to the DEA in a timely manner.

If you have any questions or need additional information, please consider the following contacts:

- Ms. Kaitlyn Fuqua, Archeologist, e-mail: kaitlyn.n.fuqua@usace.army.mil
- Mr. Jorge Rodrigo Sedeno, Biologist, e-mail: jorge.r.sedeno@usace.army.mil


Sincerely,

Danielle A. Galloway


Chief, Environmental Resources Section

Danielle A. Galloway

Enclosure 1: King Blvd Waterline Extension Project Location

Enclosure 2: King Blvd. Waterline Extension Project Location with aerial imagery

PROJECT INFORMATION

Project Title: King Blvd Waterline Extension - draft EA

Project Type: WATER MANAGEMENT, WATER DELIVERY (PIPELINES, WATER LINES), WATER

LINES-NEW CONSTRUCTION

Latitude/Longitude (DMS): 35.319918 / -106.760888

County(s): SANDOVAL

Project Description: The U.S. Army Corps of Engineers, Albuquerque District (USACE), has prepared a draft

Environmental Assessment (DEA) for the installation of a new section of waterline in Rio Rancho, Sandoval County, New Mexico. The DEA titled King Blvd Waterline Extension, Sandoval County, New Mexico [NMERT Project ID: 4884] evaluates alternatives that ensure the management of natural and cultural resources within the project footprint adhere to applicable environmental laws and regulations. The proposed action would install a new section of waterline between a newly redrilled Well 9 to join existing water infrastructure at the end of the currently paved portion of King Blvd NW in Rio Rancho, New Mexico. Construction is anticipated to start in January 2026, with an estimated

duration of 4 months.

REQUESTOR INFORMATION

Project Organization:

Contact Name: Jack Marchetti

Email Address: jack.marchetti@dgf.nm.gov

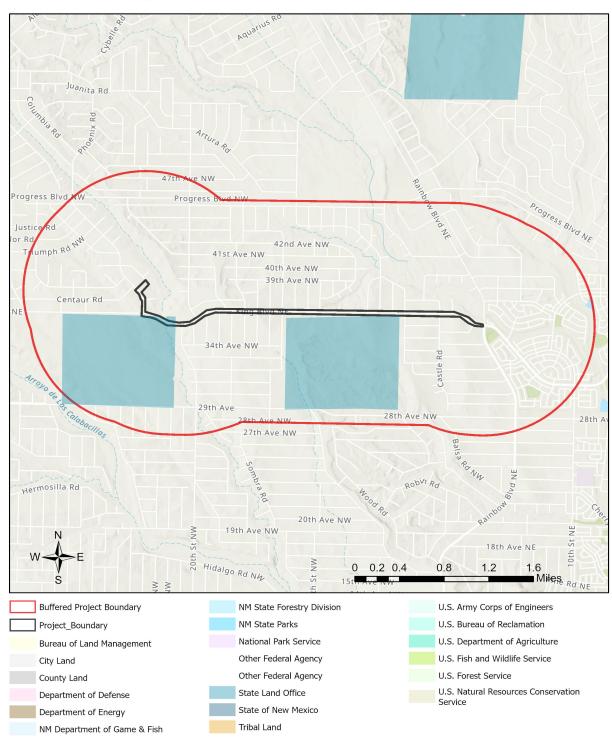
Organization: New Mexico Department of Game and Fish

Address: 1 Wildlife Way, Santa Fe NM 87507

Phone: 5054791269

OVERALL STATUS

This report contains an initial list of recommendations regarding potential impacts to wildlife or wildlife habitats from the proposed project; see the Project Recommendations section below for further details. Your project proposal is being forwarded to a New Mexico Department of Game and Fish (Department) biologist for review to determine whether there are any additional recommendations regarding the proposed actions. A Department biologist will be in touch within 30 days if there are further recommendations regarding this project proposal.


Page 1 of 8 8/22/2025 12:51:54 PM

About this report:

- This environmental review is based on the project description and location that was entered. The report must be updated if the project type, area, or operational components are modified.
- This is a preliminary environmental screening assessment and report. It is not a substitute for the potential wildlife knowledge gained by having a biologist conduct a field survey of the project area. Federal status and plant data are provided as a courtesy to users. The review is also not intended to replace consultation required under the federal Endangered Species Act (ESA), including impact analyses for federal resources from the U.S. Fish and Wildlife Service (USFWS) using their Information for Planning and Consultation tool.
- This report contains information on wildlife species protected under the ESA and the Wildlife Conservation Act (WCA), Species of Greatest Conservation Need (SGCN), and Species of Economic and Recreational Importance (SERI). Species listed under the ESA are protected from take at the federal level and under the WCA are protected from take at the state level. SGCN are identified in the State Wildlife Action Plan (SWAP) for New Mexico; all of these species are considered to be of conservation concern but not all of them are protected from take at the state or federal level. The harvest of all SERI is regulated at the state level. The Department has no authority to designate critical habitat for species listed under the WCA; only the USFWS can designate critical habitat for species listed under the ESA.
- The New Mexico Environmental Review Tool (ERT) utilizes species observation locations and species habitat suitability models, both of which are subject to ongoing change and refinement. Inclusion or omission of a species within a report cannot guarantee species presence or absence within your project area. To determine occurrence of any species listed in this report, or other wildlife that may be present within your project area, onsite surveys conducted by a qualified biologist during appropriate, species-specific survey timelines may be necessary.
- The Department encourages use of the ERT to modify proposed projects for avoidance, minimization, or mitigation of wildlife impacts. However, the ERT is not intended to be used in a repeatedly iterative fashion to adjust project attributes until a previously determined recommendation is generated. The ERT serves to assess impacts once project details are developed. The New Mexico Crucial Habitat Assessment Tool, the data layers from which are included in the ERT, is the appropriate system for advising early-stage project planning and design to avoid areas of anticipated wildlife concerns and associated regulatory requirements.

Page 2 of 8 8/22/2025 12:51:54 PM

King Blvd Waterline Extension - draft EA

NHNM, USGS, USFS, US Census Bureau, NMDGF
City of Rio Rancho, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, USDA, USFWS
Esri, NASA, NGA, USGS

Page 3 of 8 8/22/2025 12:51:54 PM

Special Status Animal Species Potentially within 1 Miles of Project Area

Common Name	Scientific Name	USFWS (ESA)	NMDGF (WCA)	NMDGF SGCN/SERI	USFS	USFS SCC	BLM
Boreal Chorus Frog	Pseudacris maculata			SGCN			
American Bittern	Botaurus lentiginosus			SGCN			BLM WATCH
Aplomado Falcon	Falco femoralis		E	SGCN			
Peregrine Falcon	Falco peregrinus		Т	SGCN			BLM WATCH
Mountain Plover	<u>Charadrius montanus</u>			SGCN	Sensitive Species		BLM WATCH
Flammulated Owl	Otus flammeolus			SGCN			BLM WATCH
Western Burrowing Owl	Athene cunicularia hypugaea			SGCN	Sensitive Species	USFS R3 SCC	BLM SENSITIVE
Common Nighthawk	<u>Chordeiles minor</u>			SGCN			
Lewis's Woodpecker	Melanerpes lewis			SGCN		USFS R3 SCC	BLM WATCH
Red-Headed Woodpecker	Melanerpes erythrocephalus			SGCN			
Williamson's Sapsucker	Sphyrapicus thyroideus			SGCN			
Olive-Sided Flycatcher	Contopus cooperi			SGCN			
Bank Swallow	Riparia riparia			SGCN			
Pinyon Jay	Gymnorhinus cyanocephalus			SGCN		USFS R3 SCC	BLM SENSITIVE
Clark's Nutcracker	Nucifraga columbiana			SGCN			
Pygmy Nuthatch	Sitta pygmaea			SGCN			
Western Bluebird	Sialia mexicana			SGCN			
Mountain Bluebird	Sialia currucoides			SGCN			
Bendire's Thrasher	Toxostoma bendirei			SGCN		USFS R3 SCC	BLM SENSITIVE
Loggerhead Shrike	<u>Lanius Iudovicianus</u>			SGCN		USFS R3 SCC	BLM WATCH
Black-Throated Gray Warbler	Setophaga nigrescens			SGCN			BLM WATCH
Grace's Warbler	Setophaga graciae			SGCN		USFS R3 SCC	BLM WATCH
Painted Redstart	Myioborus pictus			SGCN			
Black-Chinned Sparrow	Spizella atrogularis			SGCN			BLM WATCH

Page 4 of 8 8/22/2025 12:51:54 PM

Special Status Animal Species Potentially within 1 Miles of Project Area

Common Name	Scientific Name	USFWS (ESA)	NMDGF (WCA)	NMDGF	USFS	USFS SCC	BLM
				SGCN/SERI			
Thick-billed Longspur	Rhynchophanes mccownii			SGCN			BLM SENSITIVE
Chestnut-Collared Longspur	<u>Calcarius ornatus</u>			SGCN			BLM SENSITIVE
Cassin's Finch	Haemorhous cassinii			SGCN			BLM WATCH
Evening Grosbeak	Coccothraustes vespertinus			SGCN			
Spotted Bat	Euderma maculatum		Т	SGCN	Sensitive Species	USFS R3 SCC	BLM SENSITIVE
Pale Townsend's Big-Eared Bat	Corynorhinus townsendii pallescens			SGCN	Sensitive Species	USFS R3 SCC	BLM SENSITIVE
Black-Tailed Prairie Dog	Cynomys Iudovicianus			SGCN	Sensitive Species		BLM SENSITIVE
Gunnison's Prairie Dog	Cynomys gunnisoni			SGCN	Sensitive Species		BLM SENSITIVE
New Mexican Meadow Jumping Mouse	Zapus hudsonius luteus	LE	E	SGCN	Sensitive Species		BLM SENSITIVE
Mountain Lion	Puma concolor			SERI			
Elk	Cervus canadensis			SERI			
Mule Deer	Odocoileus hemionus			SERI			
<u>Pronghorn</u>	Antilocapra americana			SERI			
Desert Massasauga	Sistrurus catenatus edwardsii			SGCN			

Common Name hyperlink takes you to species account in <u>bison-m.org</u>; Scientific Name hyperlink takes you to information in <u>NatureServe Explorer</u>; ESA = Endangered Species Act, C = Candidate, LE = Listed Endangered, LT = Listed Threatened, XN = Non-essential Experimental Population, for other ESA codes see this <u>website</u>; WCA = Wildlife Conservation Act, E = Endangered, T = Threatened; SERI = Species of Economic and Recreational Importance; SGCN = Species of Greatest Conservation Need; USFS = U.S. Forest Service, Sensitive Species = A species likely to occur on USFS lands that is of concern for a potential reduction in population viability; SCC = Species of Conservation Concern; BLM = Bureau of Land Management, BLM SENSITIVE = A species that occurs on BLM lands and whose viability is at risk, BLM WATCH = Species that may be added to the sensitive species list in future pending new information regarding species status.

Page 5 of 8 8/22/2025 12:51:54 PM

Project Recommendations

Open trenches excavated for underground water or oil and gas pipelines, powerlines, or fiber optic communication lines can unintentionally entrap and cause the unnecessary mortality of amphibians, reptiles, and small mammals, and can cause injury to large mammals. Trapped animals can die from exposure, starvation, crushing from pipe-laying, entombment from trenching backfilling, drowning, and predation. This unnecessary wildlife mortality can be avoided by implementing conservation measures including: concurrent trenching, pipe-laying, and backfilling operations to minimize the amount of trench left open overnight or longer; construction escape ramps; and employing biological monitors to remove trapped animals. Periods of highest activity for amphibians and reptiles vulnerable to entrapment include summer months and wet weather, and they can be active both day and night. Small mammals subject to entrapment are active year-round and generally most active at night.

Implementing the general trenching conservation measures outlined in the Department's <u>Trenching Project Guidelines</u> will help minimize unnecessary mortality of wildlife. Best management practices should include, at minimum, the following mitigation measures.

- Whenever possible, locate trenching activities within previously disturbed areas, such as existing road or pipeline right-of-ways. To the extent possible, avoid trenching in undisturbed habitat.
- Trench during the cooler months (October March).
- Utilize concurrent trenching, pipe- or cable-laying, and backfilling. Keep trenching, pipe- or cable-laying, and
 backfilling crews as close together as possible to minimize the amount of open trench at any given time. When
 trenching activities are temporarily halted (e.g., overnight, weekends, holidays, weather shutdowns), protect
 wildlife from accessing any open trench between digging and backfilling operations by using one or more of the
 methods described below.
- Avoid leaving trenches open overnight. When trenches cannot be backfilled immediately, escape ramps should be constructed at least every 90 meters and preferably 30 meters. Escape ramps can be constructed parallel or perpendicular to the existing trench. The escape ramp slope should be less than 45 degrees (1:1). If pipe or cable has been installed but backfilling has not occurred, escape ramps may need to be constructed on both sides of the trench, since, unless the pipe is elevated enough to allow animals to move underneath it, the pipe or cable may block access of amphibians, reptiles, and small mammals to the ramps if only constructed on one side.
- Trenches that have been left open overnight should be inspected the following day by a qualified biological monitor and trapped animals removed as soon as possible, especially where state- or federally-listed threatened or endangered amphibians, reptiles, or small mammals occur. Untrained personnel should not attempt to remove trapped wildlife because of the potential to injure animals and the possibility of injury from venomous snakes. Required tools for removal will include snake tongs for removing snakes and a dip net for capturing and removing amphibians and small mammals. Many animals trapped in a trench will burrow under loose soil. To the extent possible, the biological monitor should disturb loose soil in the trench to uncover and remove trapped animals. Animals should be relocated at least 50 meters away from the open trench in undisturbed habitat.
- When pipe has been laid in the trench, end caps should be placed on the open end(s) of the pipe to preclude animals from entering. Pipe staged outside the trench should be capped until placed in the trench or checked for wildlife before being placed into the trench.
- Most wildlife can be protected by constructing silt fence completely around the open trench. Silt fence should be supported from sagging by t-posts, rebar, or stakes and buried at the base to preclude animals from moving below the fence. If construction of a silt fence is a required best management practice for erosion control, then, to preclude the need for a biological monitor, escape ramps, and concurrent backfilling, the guidelines for silt fence installation and maintenance in the Trenching Project Guidelines should be followed.

Page 6 of 8 8/22/2025 12:51:54 PM

Your proposed project activities may require a custom review for assessment of potential effects to wildlife. See the "OVERALL STATUS" section above to determine the likelihood that your project will be reviewed further based on its location. A Department biologist will confirm whether any additional conservation measures are needed. You should expect to receive any additional project recommendations within 30 days of your project submission. If the "OVERALL STATUS" section indicates that no further consultation with the Department is required based on its location, then you will only receive additional project feedback from the Department if a biologist deems it necessary.

Your project could affect important components of habitat for large mammals, including important and sensitive seasonal areas, stopover sites, or movement corridors for elk, mule deer, or pronghorn. Mitigation measures should be implemented as appropriate in these high use sites and movement areas that were identified based on data gathered and analyzed by the New Mexico Department of Game and Fish (Department) and partners. Management recommendations within these areas may include the following (as relevant to the proposed project).

- Restrictions on noise-generating activities during wintering and calving/fawning seasons. These seasons are
 November 15-April 30 for wintering and May 15-June 30 for calving fawning in northern New Mexico; specific
 timing differs for southern New Mexico. These activities include oil and gas well pad development and
 operations that expose wildlife to loud noises from drilling, compressors, and pumping stations within 400 feet
 of the source.
- Avoid new fence construction where possible and modify unavoidable fences along high use areas to make them wildlife friendly and facilitate large animal movement. Where possible, divide larger fenced sites into smaller fenced areas with movement corridors in between.
- Avoid siting facilities within important habitats such as critical seasonal ranges or parturition sites.
- To minimize surface disturbance, implement directional drilling and co-locate drill holes on a single pad in the least suitable areas for wildlife.
- Avoid construction or development activities during important times, like parturition (May 15 June 30 in northern New Mexico).
- Where feasible, coordinate with the Department on collection of pre- and post-construction observational or GPS collar data to quantify responses of big game herds to project implementation.

Burrowing owl (*Athene cunicularia*) may occur within your project area. Burrowing owls are protected from take by the Migratory Bird Treaty Act and under New Mexico state statute. Before any ground disturbing activities occur, the Department recommends that a preliminary burrowing owl survey be conducted by a qualified biologist using the Department's <u>Burrowing Owl Survey Protocol</u>. Should burrowing owls be documented in the project area, please contact the Department or USFWS for further recommendations regarding relocation or avoidance of impacts.

Prairie dog colonies may occur within the vicinity of your project area. Both black-tailed prairie dogs (*Cynomys ludovicianus*) and Gunnison's prairie dogs (*Cynomys gunnisoni*) are designated as New Mexico SGCN, and their colonies provide important habitat for other grassland wildlife. Wherever possible, occupied prairie dog colonies should be left undisturbed, and all project activities should be directed off the colony. Any burrows that are located on the project site should be surveyed by a qualified biologist to determine whether burrows are active or inactive and whether burrowing owls may be utilizing the site. Colonies within the range of the black-tailed prairie dog can be surveyed by a qualified biologist diurnally, year-round using binoculars. Colonies within the range of the Gunnison's prairie dog can be surveyed by a qualified biologist diurnally, using binoculars during the warmer months from April through October and by searching for fairly fresh scat and lack of cobwebs or debris at the mouths of burrows during the cold months (November through March). If ground-disturbing activities cannot be relocated off the prairie dog colony, or if project activities involve control of prairie dogs, the Department recommends live-trapping and relocation of prairie dogs. The Department can provide recommendations regarding suitability of potential translocation areas and procedures.

Page 7 of 8 8/22/2025 12:51:54 PM

Disclaimers regarding recommendations:

- The Department provides technical guidance to support the persistence of all protected species of native fish and wildlife, including game and nongame wildlife species. Species listed within this report include those that have been documented to occur within the project area, and others that may not have been documented but are projected to occur within the project vicinity.
- Recommendations are provided by the Department under the authority of § 17-1-5.1 New Mexico Statutes
 Annotated 1978, to provide "communication and consultation with federal and other state agencies, local
 governments and communities, private organizations and affected interests responsible for habitat, wilderness,
 recreation, water quality and environmental protection to ensure comprehensive conservation services for
 hunters, anglers and nonconsumptive wildlife users".
- The Department has no authority for management of plants or Important Plant Areas. The New Mexico
 <u>Endangered Plant Program</u>, under the Energy, Minerals, and Natural Resources Department's Forestry
 Division, identifies and develops conservation measures necessary to ensure the survival of plant species
 within New Mexico. Plant status information is provided within this report as a courtesy to users.
 Recommendations provided within the ERT may not be sufficient to preclude impacts to rare or sensitive plants,
 unless conservation measures are identified in coordination with the Endangered Plant Program.
- Additional coordination and/or consultation may also be necessary under the federal ESA or National Environmental Policy Act (NEPA). Further site-specific mitigation recommendations may be proposed during ESA consultation and/or NEPA analyses or through coordination with affected federal agencies.

Page 8 of 8 8/22/2025 12:51:54 PM